ZHANG Hong-da, WANG Shan, WU Qiang, WU Lin, LI Xiang-quan. MINEROGENESIS AND MODE OF POLYMETALLIC NODULES IN THE OCEAN[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 95-102.
Citation: ZHANG Hong-da, WANG Shan, WU Qiang, WU Lin, LI Xiang-quan. MINEROGENESIS AND MODE OF POLYMETALLIC NODULES IN THE OCEAN[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 95-102.

MINEROGENESIS AND MODE OF POLYMETALLIC NODULES IN THE OCEAN

More Information
  • Received Date: August 02, 2005
  • Revised Date: December 15, 2005
  • In the metallogenetic convergence field, the metallogenesis and growth environment is considered as a core to be described and calculated in various aspects. The results indicate that at the bottom of the ocean close to the interface of the sediments are formed the metalliferous barrier, the alkaline barrier and the oxidized ore barrier as a barrier group and mineral settling-out zone. Metallogenetic elements in the solution state such as Mn, Cu, Ni and Co all present low valence with the exception of Fe in high valence. The settling-out minerals are hematite, goethite, quartz, silicate and carbonate at the bottom of the ocean. The metallogenetic solution is rich in colloid and particles of Mn and Fe which are about 100 to 1000 times higher than that of the solution. The content of Cu, Ni and Co increases in majority. The top sediments at the bottom present light yellow, yellowish brown and brown series, and the metallogenetic solution is in low temperature, weak alkaline and strong oxide environment due to the oxygen-supplying bottom Antarctic current. The dynamic modeling of the metallogenic accumulation and separate conditions indicate that the oxidation, colloid chemical and biological reactions are the chains to produce nodules. The conclusion is that the metallogenetic mode is the exogenetic suboceanic separation affected by colloid chemical majority with physical-chemical and biological reactions in the compound zone of the suboceanic barrier group and separate conditions.
  • [1]
    克罗南D S. 水下矿产[M]. 高战朝,阎铁,陈奎英,译. 北京:科学出版社, 1980.[Cronen D S. Minerals under water[M]. Beijing:Science Press, 1980.]
    [2]
    黄永样. 多金属结核的分布规律[M]. 北京:地质出版社, 1992.[HUANG Yong-yang. The Distribution Regularity of Multiple Metal Nodules[M]. Beijing:Geological Publishing House, 1992.]
    [3]
    汪蕴璞. 洋底水岩系统界面水及其成矿机理[M]. 北京:北京科学技术出版社, 1991.[WANG Yun-pu. Ocean-floor Interface Water in Water-rock System and Its Minerogenic Mechanism[M]. Beijing:Beijing Science and Technology Press, 1991.]
    [4]
    汪蕴璞,林锦璇,王翠霞,等. 太平洋中部水文地球化学特征[M]. 北京:地质出版社, 1994.[WANG Yun-pu, LIN Jin-xuan, WANG Cui-xia, et al. Hydrogeochemistry of the Central Pacific Ocean[M]. Beijing:Geological Publishing House, 1994.]
    [5]
    Piper D Z. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean:A source of metals in ferromanganese nodules[J]. Geochimica et Cosmo-Chimica Acta, 1988, 52:2127-2145.
    [6]
    张宏达,汪珊,杨振京,等. 海洋底层水成矿金属组分存在形式和沉淀矿物的定量研究[J].地理与地理信息科学,2003,19(2):56-59.

    [ZHANG Hong-da, WANG Shan, YANG Zhen-jing, et al. Quantitative study on precipitable mineral and the existing form of ore-forming metal species of the bottom water in ocean[J]. Geography and Geo-Information Science, 2003, 19(2):56-59.]
    [7]
    吴琳,汪珊,张宏达,等. 海洋软泥水成矿金属组分存在形式及其溶解-沉淀的定量研究[J]. 海洋地质与第四纪地质,2004,24(2):49-53.

    [WU Lin,WANG Shan, ZHANG Hong-da, et al. Quantitative estimation on the existing form of ore-forming metal species and its solution-precipitation of the ooze water in ocean[J]. Marine Geology and Quaternary Geology, 2004, 24(2):49-53.]
    [8]
    金庆焕. 苏联对中太平洋铁锰结核研究的概况——太平洋中部铁锰结核一书评价[J]. 海洋地质动态, 1987(10):1-30,(11

    ):5-6.[JIN Qing-huan. The survey of Russia on studying of central Pacific——Review of the book on central Pacific ferromanganese nodule[J]. Marine Geology Letters, 1987(10):1-30,(11):5-6.]
    [9]
    哈尔巴赫. 海底矿产研究[J].许东禹, 陈宗团,译. 海洋地质动态,1987.[Halbach P. Studying on the Mineral of Marine Bottom[J]. Marine Geology Letters,1987.]
  • Related Articles

    [1]LI Fakun, DAI Liming, DU Xiaodong, CAI Guofu, LI Sanzhong, DONG Hao, WANG Yu. Numerical modeling of the coupling between strike-slip faulting and sedimentation: A case from the Yangjiang Sag of northern South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 139-150. DOI: 10.16562/j.cnki.0256-1492.2021040601
    [2]SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. DOI: 10.16562/j.cnki.0256-1492.2020050501
    [3]JING Pengfei, HU Gaowei, BU Qingtao, CHEN Jie, WAN Yizhao, MAO Peixiao. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218. DOI: 10.16562/j.cnki.0256-1492.2019122501
    [4]ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. DOI: 10.16562/j.cnki.0256-1492.2018120101
    [5]TAO Jianli, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, MA Fangfang, LAN Haoyuan, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185. DOI: 10.16562/j.cnki.0256-1492.2019040101
    [6]LI Canping, GOU Limin, YOU Jiachun, OU Chuling. STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014
    [7]ZHANG Yanping, LUO Min, HU Yu, CHEN Duofu. PROGRESS OF NUMERICAL MODELING OF EARLY DIAGENESIS AND METHANE ANAEROBIC OXIDATION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 109-121. DOI: 10.16562/j.cnki.0256-1492.2017.05.011
    [8]HU Mengying, LI Sanzhong, DAI Liming, SUO Yanhui, GUO Lingli, LIU Ze, MA Fangfang, TAO Jianli. NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 151-166. DOI: 10.16562/j.cnki.0256-1492.2017.04.010
    [9]YE Hong, YANG Tao, ZHU Guorong, JIANG Shaoyong. ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 143-152. DOI: 10.3724/SP.J.1140.2013.02143
    [10]GAO Shu. NUMERICAL MODELING OF MARINE SEDIMENTARY PROCESSES: THE NATURE, SCIENTIFIC PROBLEMS, AND PROSPECT[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7. DOI: 10.3724/SP.J.1140.2011.05001

Catalog

    Article views (1463) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return