YE Hong, YANG Tao, ZHU Guorong, JIANG Shaoyong. ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 143-152. DOI: 10.3724/SP.J.1140.2013.02143
Citation: YE Hong, YANG Tao, ZHU Guorong, JIANG Shaoyong. ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 143-152. DOI: 10.3724/SP.J.1140.2013.02143

ADVANCES IN NUMERICAL MODELING OF GAS HYDRATE FORMATION IN MARINE SEDIMENTS

More Information
  • Received Date: August 11, 2012
  • Revised Date: October 25, 2012
  • Various models, including two conceptual models and several numerical models for gas hydrate formation, accumulation, transportation and dissociation, were reviewed in this paper. These models can be classified into three groups, namely, low flux model, high flux model and mixed flux model, according to different conceptual models. After careful comparison, the hydro-dynamical model from the transport-dispersion theory in porous media is recommended for their rationality and applicability. The model has the capability to reveal the growth behavior of gas hydrate. The development potential of gas hydrate modeling is also discussed.
  • [1]
    Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31:173-187.
    [2]
    Hester K C, Brewer P G. Clathrate hydrates in nature[J]. Annual Review of Marine Science, 2009, 1:303-327.
    [3]
    Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11-12):997-1008.
    [4]
    Sloan E D Jr. Physical/chemical properties of gas hydrate and application to world margin stability and climatic change[C]//Gas Hydrate Relevance to World Margin Stability and Climate Change. Geological Society, UK. 1998.
    [5]
    Buffett B A. Clathrate hydrates[J]. Annual Review of Earth Planetary Science, 2000, 28:477-507.
    [6]
    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19:459-470.
    [7]
    张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质, 2007, 34(6):953-961.

    [ZHANG Hongtao, ZHANG Haiqi, ZHU Youhai. Gas hydrate investigation and research in China:Present status and progress[J]. Geology in China, 2007, 34(6):953-961.]
    [8]
    MacDonald G J. Role of methane clathrates in past and future climates[J]. Climatic Change, 1990, 16:247-281.
    [9]
    Davie M K, Buffett B A. A numerical model for the formation of gas hydrate below the seafloor[J]. Journal of Geophysical Research, 2001, 106(B1):497-514.
    [10]
    吴庐山,邓希光,梁金强,等.南极陆缘天然气水合物特征及资源前景[J].海洋地质与第四纪地质, 2010, 30(1):95-107.

    [WU Lushan, DENG Xiguang, LIANG Jinqiang, et al. The characteristics and resource potential of gas hydrates in the Antarctic margins[J]. Marine Geology and Quaternary Geology, 2010, 30(1):95-107.]
    [11]
    苏正,陈多福.海洋环境甲烷水合物溶解度及其对水合物发育特征的控制[J].地球物理学报,2007, 50(5):1518-1526.

    [SU Zheng, CHEN Duofu. Calculation of methane hydrate solubility in marine environment and its constraints on gas hydrate occurrence[J]. Chinese Journal of Geophysics, 2007, 50(5):1518-1526.]
    [12]
    苏正,陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学,2006, 30(3):256-264.

    [SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments[J]. Geotectonica et Metallogenia, 2006, 30(3):256-264.]
    [13]
    Milkov A V. Molecular and stable isotope compositions of natural gas hydrates:A revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36:681-702.
    [14]
    Clennell M B, Hovland M, Booth J S, et al. Formation of natural gas hydrates in marine sediments. 1. Conceptual model of gas hydrate growth conditioned by host sediment properties[J]. J. Geophys. Res., 1999, 104(B10):22985-23003.
    [15]
    Zatsepina O Y, Buffett B A. Thermodynamic conditions for the stability of gas hydrate in the seafloor[J]. J. Geophys. Res., 1998, 103:24127-24139.
    [16]
    Chatterjee Sayantan, Dickens G, Bhatnagar Gaurav, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems:A numerical modeling perspective[J]. J. Geophys. Res., 2011, 116, B 09103, doi: 10.1029/2011JB008290
    [17]
    Rempel A W, Buffett B A. Formation and accumulation of gas hydrate in porous media[J]. J. Geophys. Res., 1997, 102:10151-10164.
    [18]
    Xu Wenyue, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. J. Geophys. Res., 1999, 104:5081-5095.
    [19]
    Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484.
    [20]
    Liu Xiaoli, Flemings P B. Dynamic multiphase flow model of hydrate formation in marine sediments[J]. J. Geophys. Res., 2007, 112, B03101,doi: 10.1029/2005JB004227.
    [21]
    Chen Duofu, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam:Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico[J]. J. Geophys. Res., 2003, 108(B1):2058.
    [22]
    Bhatnagar Gaurav, Chapman W, Dickens G, et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes[J]. Am. J. Sci., 2007, 307:861-900.
    [23]
    Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I:Hydrological provinces[J]. Earth and Planet. Sci. Lett., 2001, 201:525-540.
    [24]
    Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge:constraints from ODP Leg 204[J]. Earth and Planet. Sci. Lett., 2004, 222:845-862.
    [25]
    Nimblett J, Ruppel C. Permeability evolution during the formation of gas hydrates in marine sediments[J]. J. Geophys. Res., 2003, 108(B9):2420.
    [26]
    He Li Juan, Matsubayashi O, Lei X L. Methane hydrate accumulation model for the Central Nankai accretionary prism[J]. Marine Geol., 2006, 227:201-214.
    [27]
    Davie M K, Buffett B A. A steady state model for marine hydrate formation:Constraints on methane supply from pore water sulfate profiles[J]. J. Geophys. Res., 2003, 108(B10):2495.
    [28]
    Buffett B A, Archer D. Global inventory of methane clathrate:sensitivity to changes in the deep ocean[J]. Earth and Planet. Sci. Lett., 2004, 227:185-199.
    [29]
    Garg S, Pritchett J, Katoh A, et al. A mathematical model for the formation and dissociation of methane hydrates in the marine environment[J]. J. Geophys. Res., 2008, 113:B01201.
    [30]
    Haacke R, Westbrook G, Riley M. Controls on the formation and stability of gas hydrate-related bottom-simulating reflectors (BSRs):A case study from the west Svalbard continental slope[J]. J. Geophys. Res., 2008, 113, B05104, doi:10.1029/2007 JB005200
    [31]
    Zatsepina O Y, Buffett B A. Phase equilibrium of gas hydrate:Implications for the formation of hydrate in the deep sea floor[J]. Geophys. Res. Lett., 1997, 24(13):1567-1570.
    [32]
    Archer D E, Morford J L, Emerson S R. A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains[J]. Global Biogeochemical Cycles, 2002, 16(1):10.1029/2000GB001288.
    [33]
    Torres M E, Wallmann K, Trehu A M et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planet. Sci. Lett., 2004, 226:225-241.
    [34]
    Haese R R, Meile C, Van Cappellen P, et al. Carbon geochemistry of cold seeps:Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea[J]. Earth and Planet. Sci. Lett., 2003, 212:361-375.
    [35]
    Treude T, Boetius A, Knittel K, et al. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean[J]. Marine Ecology Progress Series, 2003, 264:1-14.
    [36]
    Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18):3403-3421.
    [37]
    Haeckel M, Suess E, Wallmann K, et al. Rising methane gas bubbles form massive hydrate layers at the seafloor, Geochimica et Cosmochimica Acta, 2004, 68:4335-4345.
    [38]
    Wortmann U, Chernyavsky B. The significance of isotope specific diffusion coefficients for reaction-transport models of sulfate reduction in marine sediments[J].Geochimica et Cosmochimica Acta, 2011, 75:3046-3056.
    [39]
    Cathles L M, Chen Duo Fu. A compositional kinetic model of hydrate crystallization and dissolution[J]. J. Geophys. Res., 2004, 109:B08102.
    [40]
    Guan Jin'an, Liang Deqing, Wu Nengyou, et al. The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone[J]. J. Asian Earth Sci., 2009, 36:277-288.
    [41]
    Bear J. Dynamics of fluids in porous media[M]. American Elsevier Publishing Company Inc., 1972.
    [42]
    Luff R, Wallmann K, Grandel S, et al. Numerical modeling of benthic processes in the deep Arabian Sea[J]. Deep-Sea Research Ⅱ, 2000, 47:3039-3072.
    [43]
    Boudreau B P. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments[J]. Computers and Geosciences, 1996, 22(5):479-496.
    [44]
    Liu Xiaoli, Flemings P B. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon[J]. Earth and Planet. Sci. Lett., 2006, 241:211-226.
    [45]
    Liu Xiaoli, Flemings P B. Capillary effects on hydrate stability in marine sediments[J]. J. Geophys. Res., 2011, 116:B07102.
    [46]
    Bhatnagar Gaurav, Chapman W, Dickens G, et al. Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments[J]. Geophys. Res. Lett., 2008, 35:L03611.
    [47]
    Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and sea-floor bottom-simulating reflectors by vertical fluid expulsion[J]. J. Geophys. Res., 1992, 97:7025-7041.
    [48]
    Dickens G R, QuinbyHunt M S. Methane hydrate stability in pore water:A simple theoretical approach for geophysical applications[J]. J. Geophys. Res., 1997, 102:773-783.
    [49]
    Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997(Blake Ridge)[J]. Chem. Geol., 1999, 153:53-79.
    [50]
    Henry P, Thomas M, Clennell M B. Formation of natural gas hydrates in marine sediments 2. Thermodynamic calculations of stability conditions in porous sediments[J]. J. Geophys. Res., 1999, 104(B10):23005-23022.
    [51]
    Gering K L. Simulations of methane hydrate phenomena over geologic timescales. Part 1:Effect of sediment compaction rates on methane hydrate and free gas accumulations[J]. Earth and Planet, Sci, Lett., 2003, 206:65-81.
    [52]
    Sultan N, Foucher J P, Cochonat P, et al. Dynamics of gas hydrate:case of the Congo continental slope[J]. Marine Geology, 2004, 206:1-18.
    [53]
    Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213:379-401.
    [54]
    Xu Wenyue, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments:A theoretical approach[J]. J. Geophys. Res., 2006, 111:B01104.
    [55]
    Daigle H, Dugan B. Origin and evolution of fracture-hosted methane hydrate deposits[J]. J. Geophys. Res., 2010, 115:B11103.
    [56]
    Cacas M C, Ledoux E, De Marsily G. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation 2. The transport model[J]. Water Resources Res., 1990, 26(3):491-500.
    [57]
    Anderson M P, Woessner W W. Applied groundwater modeling, simulation of flow and advective transport[M]. Academic Press, Inc., 1992.
    [58]
    Zheng Chunmiao, Bennett G D. Applied Contaminant Transport Modeling (2nd edition)[M]. Wiley Interscience, 2002.
  • Cited by

    Periodical cited type(3)

    1. 柳耀阔,李孝波,赵扬,王天虎,席书衡. 降雨型滑坡水槽试验研究若干进展. 防灾科技学院学报. 2024(01): 16-25 .
    2. 赵文博,曹佳文,郭长宝,刘吉鑫,杨志华,魏昌利,吴瑞安. 甘肃岷县阳坡村大型古滑坡发育特征与稳定性评价. 地质通报. 2024(10): 1869-1880 .
    3. 唐家凯,吴玮江,刘韬,宿星,万朝东,张国信,安亚鹏,李祖刚. 甘肃灵台县南店子滑坡活动特征及成因分析. 中国地质灾害与防治学报. 2023(06): 20-29 .

    Other cited types(1)

Catalog

    Article views (1885) PDF downloads (19) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return