SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. DOI: 10.16562/j.cnki.0256-1492.2020050501
Citation: SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. DOI: 10.16562/j.cnki.0256-1492.2020050501

Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea

More Information
  • Received Date: May 04, 2020
  • Revised Date: June 08, 2020
  • Available Online: April 07, 2021
  • The Shenhu area is located in the Pearl River Mouth Basin. It is a critical testing area for gas hydrate drilling and pilot production. Comprehensive studies of core samples and logging and seismic data suggest that gas hydrate saturation, thickness of gas hydrate layer and gas source conditions are different from sites to sites. Based on the geological model established by integrating the well log and seismic data from both gas hydrate and deep-water oil and gas drilling sites, we simulated the temperature field, organic matter maturity, hydrocarbon generation of source rocks, fluid migration pathways and gas hydrate saturation related to different source rocks with the PetroMod software. The results suggest that biogenic gas is mainly distributed in the immature organic strata 1 500 m below the seafloor, while thermogenic gas is distributed in the matured and over matured deposits over a depth of 2 300 m. Gas hydrate cannot be formed by in-situ biogenic gas within the gas hydrate stability zone. Therefore, the gases, which may form gas hydrate are mainly the biogenic and thermogenic gases moving up from the deep strata. The comparison between the modeling results and the log-derived saturation data suggest that the simulated saturation is around 10% for biogenic gas to become gas hydrate in the lower part of stability zone, while the value is higher at some areas such as canyon ridges. Higher saturation (>40%) for hydrate formation is closely related to deep source thermogenic gas from the Wenchang and Enping Formations released in an episodic manner along the fluid migration channels such as sand layers, faults and gas chimneys. In addition, the methane contents from biogenic and thermogenic gases are calculated based on the modeling gas hydrate saturation. It shows that the thermogenic gas content is about 80% at Site W19 and 73% at Site W17, and nearly no thermogenic gas is found at Site SH2.
  • [1]
    朱俊章, 施和生, 庞雄, 等. 白云凹陷天然气生成与大中型气田形成关系[J]. 天然气地球科学, 2012, 23(2):213-221. [ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Discussion on natural gas generation and giant-medium size gas field formation in Baiyun sag [J]. Natural Gas Geosciences, 2012, 23(2): 213-221.
    [2]
    何家雄, 卢振权, 张伟, 等. 南海北部珠江口盆地深水区天然气水合物成因类型及成矿成藏模式[J]. 现代地质, 2015, 29(5):1024-1034. [HE Jiaxiong, LU Zhenquan, ZHANG Wei, et al. Biogenetic and sub-biogenetic gas resource and genetic types of natural gas hydrates in Pearl River Mouth Basin, northern area of South China Sea [J]. Geoscience, 2015, 29(5): 1024-1034. doi: 10.3969/j.issn.1000-8527.2015.05.005
    [3]
    杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14. [YANG Shengxiong, LIANG Jinqiang, LU Jing’an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 1-14.
    [4]
    Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1: 5-16.
    [5]
    Wang X J, Collett T S, Lee M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea [J]. Marine Geology, 2014, 357: 272-292. doi: 10.1016/j.margeo.2014.09.040
    [6]
    Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu area, Northern South China Sea: Geochemical results [J]. Journal of Geological Research, 2011, 2011: 370298.
    [7]
    Yu X H, Wang J Z, Liang J Q, et al. Depositional characteristics and accumulation model of gas hydrates in northern South China Sea [J]. Marine and Petroleum Geology, 2014, 56: 74-86. doi: 10.1016/j.marpetgeo.2014.03.011
    [8]
    Zhang W, Liang J Q, Wei J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea [J]. Marine and Petroleum Geology, 2020, 114: 104191. doi: 10.1016/j.marpetgeo.2019.104191
    [9]
    Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate [J]. Organic Geochemistry, 1995, 23(11-12): 997-1008. doi: 10.1016/0146-6380(96)00002-2
    [10]
    Qian J, Wang X J, Collett T S, et al. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 662-674. doi: 10.1016/j.marpetgeo.2018.09.024
    [11]
    Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea [J]. Fire in the Ice, 2017, 17(1): 7-11.
    [12]
    于兴河, 梁金强, 方竞男. 珠江口盆地深水区晚中新世以来构造沉降与似海底反射(BSR)分布的关系[J]. 古地理学报, 2012, 14(6):787-800. [YU Xinghe, LIANG Jinqiang, FANG Jingnan, et al. Tectonic subsidence characteristics and its relationship to BSR distribution in deep water area of Pearl River Mouth Basin since the Late Miocene [J]. Journal of Palaeogeography, 2012, 14(6): 787-800. doi: 10.7605/gdlxb.2012.06.010
    [13]
    Jin J P, Wang X J, Guo Y Q, et al. Geological controls on the occurrence of recently formed highly concentrated gas hydrate accumulations in the Shenhu area, South China Sea [J]. Marine and Petroleum Geology, 2020, 116: 104294. doi: 10.1016/j.marpetgeo.2020.104294
    [14]
    Wei J G, Fang Y X, Lu H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 622-628. doi: 10.1016/j.marpetgeo.2018.07.028
    [15]
    吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650. [WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, Northern South China Sea [J]. Chinese Journal of Geophysics, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
    [16]
    Piñero E, Hensen C, Haeckel M, et al. 3-D numerical modelling of methane hydrate accumulations using PetroMod [J]. Marine and Petroleum Geology, 2016, 71: 288-295. doi: 10.1016/j.marpetgeo.2015.12.019
    [17]
    Burwicz E, Reichel T, Wallmann K, et al. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(5): 1959-1985. doi: 10.1002/2017GC006876
    [18]
    Kroeger K F, Plaza-Faverola A, Barnes P M, et al. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation - A model study [J]. Marine and Petroleum Geology, 2015, 63: 97-114. doi: 10.1016/j.marpetgeo.2015.01.020
    [19]
    何丽娟, 雷兴林, 张毅. 南海北部神狐海域天然气水合物形成聚集的数值模拟研究[J]. 地球物理学报, 2011, 54(5):1285-1292. [HE Lijuan, LEI Xinglin, ZHANG Yi. Numerical modeling of gas hydrate accumulation in the marine sediments of Shenhu area, northern South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(5): 1285-1292. doi: 10.3969/j.issn.0001-5733.2011.05.017
    [20]
    Su P B, Liang J Q, Peng J, et al. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea [J]. Journal of Asian Earth Sciences, 2018, 168: 57-76. doi: 10.1016/j.jseaes.2018.08.001
    [21]
    Zhu H X, Xu T F, Zhu Z Y, et al. Numerical modeling of methane hydrate accumulation with mixed sources in marine sediments: Case study of Shenhu Area, South China Sea [J]. Marine Geology, 2020, 423: 106142. doi: 10.1016/j.margeo.2020.106142
    [22]
    庞雄, 施和生, 朱明, 等. 再论白云深水区油气勘探前景[J]. 中国海上油气, 2014, 26(3):23-29. [PANG Xiong, SHI Hesheng, ZHU Ming, et al. A further discussion on the hydrocarbon exploration potential in Baiyun deep water area [J]. China Offshore Oil and Gas, 2014, 26(3): 23-29.
    [23]
    Ping H W, Chen H H, Zhu J Z, et al. Origin, source, mixing, and thermal maturity of natural gases in the Panyu lower uplift and the Baiyun depression, Pearl River Mouth Basin, northern South China Sea [J]. AAPG Bulletin, 2018, 102(11): 2171-2200. doi: 10.1306/04121817160
    [24]
    谢志远, 杨建民, 孙龙涛, 等. 南海北缘白云凹陷北坡裂后断裂活动特征及构造沉积响应[J]. 热带海洋学报, 2017, 36(5):59-71. [XIE Zhiyuan, YANG Jianmin, SUN Longtao, et al. The characteristics of post-rift fault activities and sedimentary response on the northern slope of the Baiyun sag in the northern margin of the South China Sea [J]. Journal of Tropical Oceanography, 2017, 36(5): 59-71.
    [25]
    米立军, 何敏, 翟普强, 等. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析[J]. 中国海上油气, 2019, 31(1):1-12. [MI Lijun, HE Min, ZHAI Puqiang, et al. Integrated study on hydrocarbon types and accumulation periods of Baiyun sag, deep water area of Pearl River Mouth basin under the high heat flow background [J]. China Offshore Oil and Gas, 2019, 31(1): 1-12.
    [26]
    何家雄, 夏斌, 张启明, 等. 南海北部边缘盆地生物气和亚生物气资源潜力与勘探前景分析[J]. 天然气地球科学, 2005, 16(2):167-174. [HE Jiaxiong, XIA Bin, ZHANG Qiming, et al. Resources base and exploration potential of biogenic and sub-biogenic gas in marginal basin of the northern South China Sea [J]. Natural Gas Geoscience, 2005, 16(2): 167-174. doi: 10.3969/j.issn.1672-1926.2005.02.007
    [27]
    Yang S X, Zhang M, Liang J Q, et al. Preliminary results of China's third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea [J]. Fire in the Ice, 2015, 15: 1-5.
    [28]
    Zhang H Q, Yang S X, Wu N Y, et al. Successful and surprising results for China's first gas hydrate drilling expedition [J]. Fire in the Ice, 2007, 7(3): 6-9.
    [29]
    刘杰, 苏明, 乔少华, 等. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨[J]. 沉积学报, 2016, 34(5):940-950. [LIU Jie, SU Ming, QIAO Shaohua, et al. Forming mechanism of the slope-confined submarine canyons in the Baiyun sag, Pearl River Mouth Basin [J]. Acta Sedimentologica Sinica, 2016, 34(5): 940-950.
    [30]
    李华, 王英民, 徐强, 等. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式[J]. 地质学报, 2014, 88(6):1120-1129. [LI Hua, WANG Yingmin, XU Qiang, et al. Interactions between down-slope and along-slope processes on the northern slope of South China Sea: products, processes, and depositional model [J]. Acta Geologica Sinica, 2014, 88(6): 1120-1129.
    [31]
    付超, 于兴河, 梁金强, 等. 南海北部神狐海域不同类型水道及其天然气水合物成藏的差异[J]. 海洋地质与第四纪地质, 2017, 37(6):168-177. [FU Chao, YU Xinghe, LIANG Jinqiang, et al. Types of sea-bottom channels and related gas hydrate accululations in the Shenhu area, South China Sea (SCS) [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 168-177.
    [32]
    姜衡, 苏明, 雷新华, 等. 神狐海域海底峡谷群脊部细粒浊积体分布范围及意义[J]. 海洋地质与第四纪地质, 2018, 38(5):52-62. [JIANG Heng, SU Ming, LEI Xinhua, et al. Distribution of fine-grained turbidites on canyon ridges in the Shenhu area of northern South China Sea and its implications [J]. Marine Geology and Quaternary Geology, 2018, 38(5): 52-62.
    [33]
    李杰, 何敏, 颜承志, 等. 南海北部荔湾3区块天然气水合物分布特征及目标识别[J]. 海洋科学, 2019, 43(5):81-89. [LI Jie, HE Min, YAN Chengzhi, et al. The distribution and characteristics of gas hydrate in the Liwan3, northern slope of the South China Sea [J]. Marine Sciences, 2019, 43(5): 81-89.
    [34]
    Kong L T, Chen H H, Ping H W, et al. Formation pressure modeling in the Baiyun Sag, northern South China Sea: Implications for petroleum exploration in deep-water areas [J]. Marine and Petroleum Geology, 2018, 97: 154-168. doi: 10.1016/j.marpetgeo.2018.07.004
    [35]
    柳保军, 庞雄, 王家豪, 等. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义[J]. 石油学报, 2019, 40(S1):124-138. [LIU Baojun, PANG Xiong, WANG Jiahao, et al. Sedimentary system response process and hydrocarbon exploration significance of crust thinning zone at extensional continental margin of deep-water area in Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 124-138. doi: 10.7623/syxb2019S1011
    [36]
    Carman P C. Flow of Gases through Porous Media[M]. New York: Academic Press Inc., 1956.
    [37]
    McKenzie D. Some remarks on the development of sedimentary basins [J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7
    [38]
    胡圣标, 龙祖烈, 朱俊章, 等. 珠江口盆地地温场特征及构造-热演化[J]. 石油学报, 2019, 40(S1):178-187. [HU Shengbiao, LONG Zulie, ZHU Junzhang, et al. Characteristics of geothermal field and the tectonic-thermal evolution in Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 178-187. doi: 10.7623/syxb2019S1015
    [39]
    朱俊章, 施和生, 庞雄, 等. 白云深水区东部油气成因来源与成藏特征[J]. 中国石油勘探, 2012, 17(4):20-28. [ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Origins and accumulation characteristics of hydrocarbons in eastern Baiyun deepwater area [J]. China Petroleum Exploration, 2012, 17(4): 20-28. doi: 10.3969/j.issn.1672-7703.2012.04.004
    [40]
    张功成, 杨海长, 陈莹, 等. 白云凹陷——珠江口盆地深水区一个巨大的富生气凹陷[J]. 地质勘探, 2014, 34(11):11-25. [ZHANG Gongcheng, YANG Haichang, CHEN Ying, et al. The Baiyun sag: A giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin [J]. Natural Gas Industry, 2014, 34(11): 11-25.
    [41]
    Burnham A K. A simple kinetic model of petroleum formation and cracking[R]. California, U.S.: Lawrence Livermore National Laboratory, 1989.
    [42]
    Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics [J]. AAPG Bulletin, 1990, 74(10): 1559-1570.
    [43]
    Wang X J, Hutchinson D R, Wu S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea [J]. Journal of Geophysical Research, 2011, 116: B05102.
    [44]
    Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China sea [J]. Interpretation, 2017, 5(3): SM13-SM23. doi: 10.1190/INT-2016-0211.1
  • Cited by

    Periodical cited type(10)

    1. 杨名名,张一帆,李杏筠,周圆. 华南岬湾海滩冲淤演变特征及其机制分析——以南澳岛前江湾为例. 海洋技术学报. 2024(02): 43-57 .
    2. 李华勇,袁俊英,杨艺萍,梁志姣,李智慧,吴帅虎,张虎才. 山东弥河流域现代洪水沉积特征与水动力过程反演. 海洋地质与第四纪地质. 2022(02): 178-189 . 本站查看
    3. 李华勇,赵楠,杨艺萍,于正松,孙启发,吴帅虎,张曼,张虎才. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建. 地质力学学报. 2022(02): 226-236 .
    4. 李平,杜军,张志卫,徐国强. 粤东南澳岛青澳海滩侵蚀退化风险评价及其安全调控. 海洋科学进展. 2020(01): 171-181 .
    5. 李华勇,唐倩玉,张虎才,李婷,段立曾. MS2000激光粒度仪测量第四纪沉积物粒度的定量进样研究. 海洋地质与第四纪地质. 2020(02): 200-207 . 本站查看
    6. 张桂华,刘洪妍,介冬梅,刘颖,蒙萌,王江永,高桂在,李德晖,李楠楠,牛洪昊,冷程程. 科尔沁沙地不同类型沙丘表土有机质与粒度特征差异分析. 生态环境学报. 2020(11): 2223-2230 .
    7. 杨文卿,孙立广,杨仲康,高抒,高月嵩,邵达,梅衍俊,臧晶晶,王玉宏,谢周清. 南澳宋城:被海啸毁灭的古文明遗址. 科学通报. 2019(01): 107-120 .
    8. 李强,张学华. 基于遗传算法的BP神经网络模型在预测海洋沉积物烧失量中的应用. 冶金分析. 2019(04): 25-30 .
    9. 刘勇,潘雪花,向莉芳,袁智郴,杨作治,李正西,赵增友. 贵州西部高原末次冰消期气候记录及古环境意义. 绿色科技. 2019(24): 174-178 .
    10. 刘璇,张永战,夏非,王嵘,任珊,WüNNEMANN Bernd. 北海南部Lunden湾全新世沉积环境演变. 地理研究. 2017(11): 2261-2276 .

    Other cited types(19)

Catalog

    Article views (1938) PDF downloads (59) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return