Citation: | TAO Jianli, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, MA Fangfang, LAN Haoyuan, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185. DOI: 10.16562/j.cnki.0256-1492.2019040101 |
[1] |
Dobretsov N L, Buslov M M, Yu U. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time [J]. Journal of Asian Earth Sciences, 2004, 23(5): 673-690. doi: 10.1016/S1367-9120(03)00132-9
|
[2] |
Tetreault J L, Buiter S J H. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments [J]. Solid Earth, 2014, 5(2): 1243-1275. doi: 10.5194/se-5-1243-2014
|
[3] |
Liu L, Zhang J S. Differential contraction of subducted lithosphere layers generates deep earthquakes [J]. Earth and Planetary Science Letters, 2015, 421: 98-106. doi: 10.1016/j.jpgl.2015.03.053
|
[4] |
Axen G J, Van Wijk J W, Currie C A. Basal continental mantle lithosphere displaced by flat-slab subduction [J]. Nature Geoscience, 2018, 11: 961-964. doi: 10.1038/s41561-018-0263-9
|
[5] |
Wu F Y, Yang J H, Xu Y, et al. Destruction of the North China Craton in the Mesozoic [J]. Annual Review of Earth and Planetary Sciences, 2019.
|
[6] |
Niu Y L, Liu Y, Shao F L, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic [J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z
|
[7] |
Ding W W, Li J B, Wu Z C, et al. Late Mesozoic transition from Andean-type to Western pacific-type of the East China continental margin-Is the East China Sea basement an allochthonous terrain [J]. Geological Journal, 2017, 52(5): 1994-2002.
|
[8] |
Huang H H, Wu Y M, Song X, et al. Joint Vp and Vs tomography of Taiwan: implications for subduction-collision orogeny [J]. Earth and Planetary Science Letters, 2014, 392: 177-191. doi: 10.1016/j.jpgl.2014.02.026
|
[9] |
Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China [J]. Tectonics, 2014, 33(12): 2444-2466. doi: 10.1002/2014TC003637
|
[10] |
Cloos M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts [J]. Geological Society of America Bulletin, 1993, 105(6): 715. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
|
[11] |
Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 0-79.
|
[12] |
Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8).
|
[13] |
Vogt K, Gerya T V. From oceanic plateaus to allochthonous terranes: numerical modelling [J]. Gondwana Research, 2014, 25(2): 494-508. doi: 10.1016/j.gr.2012.11.002
|
[14] |
Yang S H, Li Z H, Gerya T, et al. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet [J]. Tectonophysics, 2018, 746: 212-228. doi: 10.1016/j.tecto.2017.07.018
|
[15] |
李三忠, 张勇, 郭玲莉, 等. 那丹哈达地体及周缘中生代变形与增生造山过程[J]. 地学前缘, 2017, 24(4):200-212. [LI Sanzhong, ZHANG Yong, GUO Lingli, et al. Mesozoic deformation and accretionary orogenic processes around the Nadanhada Terrane [J]. Earth Science Frontiers, 2017, 24(4): 200-212.
|
[16] |
Liu Y J, Li W, Feng Z, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt [J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013
|
[17] |
刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37(04):943-951. [LIU Yongjiang, ZHANG Xingzhou, JIN Wei, et al. Paleozoic tectonic evolution in Northeast China [J]. Geology in China, 2010, 37(04): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
|
[18] |
Ouyang H G, Mao J W, Santosh M, et al. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits [J]. Journal of Asian Earth Sciences, 2013, 78(12): 222-236.
|
[19] |
Li S Z, Jahn B, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data [J]. Earth-Science Reviews, 2017, 166: 270-285. doi: 10.1016/j.earscirev.2017.01.009
|
[20] |
Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China [J]. Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x
|
[21] |
Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate [J]. Journal of Asian Earth Sciences, 2006, 26(3): 207-224.
|
[22] |
Tang J, Xu W, Niu Y, et al. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate [J]. Lithos, 2016, 266: 202-212.
|
[23] |
Kojima S. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 69(3-4): 213-232.
|
[24] |
Mizutani S, Kojima S, Shao J A, et al. Mesozoic radiolarians from the Nadanhada area, northeast China [J]. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 1986, 62(9): 337-340. doi: 10.2183/pjab.62.337
|
[25] |
Gerya T V, Yuen D A. Charaterictics-based marker method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
|
[26] |
Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps [J]. Journal of Metamorphic Geology, 2005, 23(2): 21.
|
[27] |
Gerya T V, 2010. Introduction to Numerical Geodynamic Modelling[M]. Cambridge University Press, New York.
|
[28] |
Ranalli G. Rheology of the Earth: Deformation and Flow Processes in Geophysics and Geodynamics, 2nd ed[M]. Springer Science and Business Media, 1995.
|
[29] |
Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones [J]. Earth and Planetary Science Letters, 2003, 212(1): 47-62.
|
[30] |
Gerya T V, Meilick F I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts [J]. Journal of Metamorphic Geology, 2011, 29(1): 7-31. doi: 10.1111/j.1525-1314.2010.00904.x
|
[31] |
Bittner D, Schmeling H. Numerical Modelling of Melting Processes and Induced Diapirism In the Lower Crust [J]. Geophysical Journal International, 1995, 123(1): 59-70. doi: 10.1111/j.1365-246X.1995.tb06661.x
|
[32] |
Clauser C, Huenges E. Thermal conductivity of rocks and Minerals[M]. Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 1995: 105-126.
|
[33] |
Turcotte D, Schubert G. Geodynamics[M]. Cambridge university press, 2002: 1-456.
|
[34] |
Hilairet N, Reynard B, Wang Y, et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction [J]. Science, 2007, 318(5858).
|
[35] |
Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
|
[36] |
刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63:3070-3088. [LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes [J]. Chin Sci Bull, 2018, 63: 3070-3088.
|
[37] |
Mann P, Taira A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone [J]. Tectonophysics, 2004, 389(3-4): 0-190.
|
[38] |
Shulgin A, Kopp H, Mueller C, et al. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards [J]. Geophysical Journal International, 2011, 184(1): 12-28. doi: 10.1111/j.1365-246X.2010.04834.x
|
[39] |
Dai L M, Li S Z, Li Z H, et al. Dynamic processes and mechanisms for collision to post﹐rogenic extension in the Western Dabie Orogen: Insights from numerical modeling [J]. Geological Journal, 2017, 52: 44-58. doi: 10.1002/gj.2993
|
[40] |
Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
|
[41] |
Liu Z, Dai L M, Li S, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: Thermo-mechanical modelling [J]. Geological Journal, 2018, 53: 240-251. doi: 10.1002/gj.3021
|
[42] |
Liao J, Wang Q, Gerya T, et al. Modeling craton destruction by hydration‐induced weakening of the upper mantle [J]. Journal of Geophysical Research Solid Earth, 2017, 122(9): 7449-7466. doi: 10.1002/2017JB014157
|
[43] |
Gerya T V, Perchuk L L, Burg J P, 20 08. Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts [J]. Lithos, 2008, 103(1-2): 236-256. doi: 10.1016/j.lithos.2007.09.017
|
[44] |
Li Z H, Liu M, Gerya T. Lithosphere delamination in continental collisional orogens: A systematic numerical study [J]. Journal of Geophysical Research Solid Earth, 2016, 121: 5186-5211. doi: 10.1002/2016JB013106
|
[45] |
Clerc C, Jolivet L, Ringenbach J C. Ductile extensional shear zones in the lower crust of a passive margin [J]. Earth and Planetary Science Letters, 2015, 431: 1-7. doi: 10.1016/j.jpgl.2015.08.038
|
[46] |
Ramos A, Fernández O, Torne M, et al. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys [J]. Tectonophysics, 2017, 705: 42-62. doi: 10.1016/j.tecto.2017.03.012
|
[47] |
Ruiz M, Díaz J, Pedreira D, et al. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles [J]. Tectonophysics, 2017, 717: 65-82. doi: 10.1016/j.tecto.2017.07.008
|
[48] |
Nair N, Pandey D K. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India [J]. Journal of Asian Earth Sciences, 2018, 152: 132-144. doi: 10.1016/j.jseaes.2017.11.037
|
[49] |
Schubert G, Sandwell D. Crustal volumes of the continents and of oceanic and continental submarine plateaus [J]. Earth and Planetary Science Letters, 1989, 92(2): 234-246. doi: 10.1016/0012-821X(89)90049-6
|
[50] |
Zagorevski A, Lissenberg C J, Van Staal C R. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians [J]. Tectonophysics, 2009, 479(1-2): 150-164. doi: 10.1016/j.tecto.2008.12.002
|
[51] |
Johnson H P, Pruis M J. Fluxes of fluid and heat from the oceanic crustal reservoir [J]. Earth and Planetary Science Letters, 2003, 216(4): 0-574.
|
[52] |
Vogt K, Gerya T. Deep plate serpentinization triggers skinning of subducting slabs [J]. Geology, 2014, 42(8): 723-726. doi: 10.1130/G35565.1
|
[53] |
Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1): 79-93.
|
[54] |
Davies G F. Topography: a robust constraint on mantle fluxes [J]. Chemical Geology, 1998, 145(3-4): 479-489. doi: 10.1016/S0009-2541(97)00156-3
|
[55] |
Hill R I, Campbell I H, Davies G F, et al. Mantle Plumes and Continental Tectonics [J]. Science, 1992, 256(5054): 186-193. doi: 10.1126/science.256.5054.186
|
[56] |
Niu Y, O'Hara M J, Pearce J A. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: a Petrological Perspective [J]. Journal of Petrology, 2003, 44(11): 764-778.
|
[57] |
Burke K, Fox P J, Şengör A M C. Buoyant ocean floor and the evolution of the Caribbean [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B8).
|
[58] |
Alsaad N, Van A R, Pranger A D, et al. Continental accretion: from oceanic plateaus to allochthonous terranes [J]. Science, 1981, 213: 47-54. doi: 10.1126/science.213.4503.47
|
[59] |
Abbott D H, Drury R, Mooney W D. Continents as lithological icebergs: the importance of buoyant lithospheric roots [J]. Earth and Planetary Science Letters, 1997, 149(1-4): 0-27.
|
[60] |
Mueller R F, Saxena S K. Metamorphic mineral facies[M]//Chemical Petrology. Springer, New York, NY, 1977: 181-198.
|
[61] |
Gulick S P S, Bangs N L B, Shipley T H, et al. Three-dimensional architecture of the Nankai accretionary prism's imbricate thrust zone off Cape Muroto, Japan: prism reconstruction via en echelon thrust propagation [J]. Journal of Geophysical Research Solid Earth, 2004: 109.
|
[62] |
Gutscher M A, Kukowski N, Malavieille J, et al. Episodic imbricatethrusting and underthrusting: analog experiments and mechanical analysis applied to the Alaskan accretionary wedge [J]. Journal of Geophysical Research Solid Earth, 1998, 103: 10161-10176. doi: 10.1029/97JB03541
|
[63] |
万阔. 完达山地体构造特征、结构及增生过程[D]. 吉林大学, 2017
WAN Kuo. Tectonic features, structures and accretionary processes of the Wandashan Terrane, NE China[D]. Jilin University, 2017
|
[64] |
兰浩圆. 华北东部及东北早中生代变形特征与构造演化[D]. 中国海洋大学, 2018
LAN Haoyuan. Early Mesozoic structural features and tectonic evolution in the eastern North China and Northeast China[D]. Ocean University of China, 2018
|
[65] |
张魁武, 邵济安, 唐克东, 等. 黑龙江省东部跃进山群中绿片岩的地球化学特征及地质意义[J]. 岩石学报, 1997(02):43-47. [ZHANG Kuiwu, SHAO Jian, TANG Kedong, et al. The Geochemical Characteristics and the Geological Significance of Green-schists in Yuejinshan Group, East Heilongjiang Province, China [J]. Acta Petrologica Sinica, 1997(02): 43-47.
|
[66] |
Sun M D, Xu Y G, Wilde S A, et al. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo‐Pacific [J]. Tectonics, 2015, 34(6): 1269-1289. doi: 10.1002/2015TC003870
|
[1] | LI Fakun, DAI Liming, DU Xiaodong, CAI Guofu, LI Sanzhong, DONG Hao, WANG Yu. Numerical modeling of the coupling between strike-slip faulting and sedimentation: A case from the Yangjiang Sag of northern South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 139-150. DOI: 10.16562/j.cnki.0256-1492.2021040601 |
[2] | SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. DOI: 10.16562/j.cnki.0256-1492.2020050501 |
[3] | LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601 |
[4] | LIU Ze, DAI Liming, LI Sanzhong, MA Fangfang, SUO Yanhui, GUO Lingli, TAO Jianli, YANG Chuansheng, ZHANG Jiaqi. NUMERICAL SIMULATION OF MESOZOIC TECTONIC PROCESSES IN THE SOUTHERN PART OF EAST CHINA SEA CONTINENTAL SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011 |
[5] | HU Mengying, LI Sanzhong, DAI Liming, SUO Yanhui, GUO Lingli, LIU Ze, MA Fangfang, TAO Jianli. NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 151-166. DOI: 10.16562/j.cnki.0256-1492.2017.04.010 |
[6] | JIANG Gaolei, NIE Zhenlong, SHEN Jianmei, WANG Zhe, ZHAO Hua, LIU Linjing, YANG Jinsong. RESEARCH PROGRESS OF QUATERNARY ENVIRONMENT OF BADAIN JARAN DESERT[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 141-149. DOI: 10.16562/j.cnki.0256-1492.2017.01.017 |
[7] | LI Dong, HU Xiaolin, GUO Gang, MIAO Shunde, GUO Zhifeng. DIFFERENTIATED ACCUMULATION OF OIL AND GAS IN SOME OIL-BEARING BASINS IN THE EASTERN KALIMANTAN, INDONESIA[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 129-135. DOI: 10.16562/j.cnki.0256-1492.2016.04.015 |
[8] | XU Yang, LI Rihui, WEN Zhenhe, GUO Xingwei, HOU Fanghui, YANG Kunguang. COMPARISON OF PRECAMBRIAN BASEMENTS BETWEEN THE JIAOBEI TERRANE AND THE NORTH SULU UHP METAMORPHIC BELT, JIAODONG AREA IN EAST CHINA[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 99-110. DOI: 10.3724/SP.J.1140.2015.01099 |
[9] | GUO Feng, SUN Donghuai, WANG Fei, LI Zaijun, LI Baofeng. GRAIN-SIZE DISTRIBUTION PATTERN OF THE DEPOSITIONAL SEQUENCE IN CENTRAL BADAIN JARAN DESERT AND ITS GENETIC INTERPRETATION[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 165-173. DOI: 10.3724/SP.J.1140.2014.01165 |
[10] | LIAO Jing, YUE Baojing, SHI Jian. EXTENTION OF QIANLIYAN UPLIFT IN THE SOUTH YELLOW SEA[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 153-162. DOI: 10.3724/SP.J.1140.2013.02153 |