Citation: | HU Yanbin,LAI Zhiqing,LI Meng,et al. Progress of the researches on magmatism in the Mariana Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):64-72. DOI: 10.16562/j.cnki.0256-1492.2023091601 |
[1] |
曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动[J]. 海洋科学集刊, 2016(51):3-36
ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, et al. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific[J]. Studia Marina Sinica, 2016(51):3-36.
|
[2] |
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7):737-750
SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7):737-750.
|
[3] |
刘鑫, 李三忠, 赵淑娟, 等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4):329-340
LIU Xin, LI Sanzhong, ZHAO Shujuan, et al. Structure of the Mariana subduction system[J]. Earth Science Frontiers, 2017, 24(4):329-340.
|
[4] |
Tian L Y, Zhao G T, Zhao G C, et al. Geochemistry of basaltic lavas from the Mariana Trough: evidence for influence of subduction component on the generation of backarc basin magmas[J]. International Geology Review, 2005, 47(4):387-397. doi: 10.2747/0020-6814.47.4.387
|
[5] |
Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497:146-161. doi: 10.1016/j.chemgeo.2018.09.002
|
[6] |
Zhang Y X, Zeng Z G, Gaetani G, et al. Mineralogical constraints on the magma mixing beneath the Iheya Graben, an active back-arc spreading Centre of the Okinawa trough[J]. Journal of Petrology, 2020, 61(9):egaa098.
|
[7] |
李晓辉, 杨慧心, 曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1):166-179
LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1):166-179.
|
[8] |
Fryer P. Geology of the Mariana trough[M]//Taylor B. Backarc Basins: Tectonics and Magmatism. New York: Springer, 1995: 237-279.
|
[9] |
Lai Z Q, Zhao G T, Han Z Z, et al. The magma plumbing system in the Mariana Trough back-arc basin at 18° N[J]. Journal of Marine Systems, 2018, 180:132-139. doi: 10.1016/j.jmarsys.2016.11.008
|
[10] |
Zhao G T, Luo W Q, Lai Z Q, et al. Influence of subduction components on magma composition in back‐arc basins: a comparison between the Mariana and Okinawa troughs[J]. Geological Journal, 2016, 51(S1):357-367. doi: 10.1002/gj.2820
|
[11] |
Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc–basin system: implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7):Q07006.
|
[12] |
Anderson M O, Chadwick W W Jr, Hannington M D, et al. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6):2240-2274. doi: 10.1002/2017GC006813
|
[13] |
Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of the axial ridge of the Mariana Trough backarc spreading center[J]. Earth and Planetary Science Letters, 1990, 100(1-3):226-250. doi: 10.1016/0012-821X(90)90187-3
|
[14] |
Lai Z Q, Gao W, Han Z Z, et al. Mineralogical and geochemical constraints on the mantle source characteristics of basaltic lavas from the central Mariana Trough[J]. Journal of Ocean University of China, 2023, 22(5):1313-1325. doi: 10.1007/s11802-023-5449-0
|
[15] |
Martínez F, Fryer P, Baker N A, et al. Evolution of backarc rifting: Mariana Trough, 20°-24°N[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B3):3807-3827. doi: 10.1029/94JB02466
|
[16] |
Stern R J, Bloomer S H, Martinez F, et al. The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: a first report[J]. Island Arc, 1996, 5(3):354-372. doi: 10.1111/j.1440-1738.1996.tb00036.x
|
[17] |
Michibayashi K, Ohara Y, Stern R J, et al. Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: results of a Shinkai 6500 dive[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(5):Q05X06. doi: 10.1029/2008GC002197
|
[18] |
Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60(12):2153-2166. doi: 10.1016/0016-7037(96)00078-6
|
[19] |
高永军, 穆治国, 吴世迎. 马里亚纳海槽玄武岩K-Ar地质年代学及地球化学研究[J]. 海洋地质与第四纪地质, 2000, 20(3):53-59
GAO Yongjun, MU Zhiguo, WU Shiying. Studies on K-Ar geochronology and geochemistry of Mariana Trough basalts[J]. Marine Geology & Quaternary Geology, 2000, 20(3):53-59.
|
[20] |
Yan Q S, Zhang P Y, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes[J]. Mineralogy and Petrology, 2019, 113(6):803-820. doi: 10.1007/s00710-019-00683-x
|
[21] |
张国良, 罗青, 陈立辉. 大洋地幔化学组成不均一性成因研究回顾及展望[J]. 海洋地质与第四纪地质, 2017, 37(1):1-13
ZHANG Guoliang, LUO Qing, CHEN Lihui. Geochemical heterogeneity of oceanic mantle: a review[J]. Marine Geology & Quaternary Geology, 2017, 37(1):1-13.
|
[22] |
Rubin K H, Sinton J M, Maclennan J, et al. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes[J]. Nature Geoscience, 2009, 2(5):321-328. doi: 10.1038/ngeo504
|
[23] |
Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington: American Geophysical Union, 2006: 63-86.
|
[24] |
Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and a recycled component in backarc basin mantle[J]. Earth and Planetary Science Letters, 1990, 100(1-3):251-264. doi: 10.1016/0012-821X(90)90188-4
|
[25] |
Woodhead J, Stern R J, Pearce J, et al. Hf-Nd isotope variation in Mariana Trough basalts: the importance of “ambient mantle” in the interpretation of subduction zone magmas[J]. Geology, 2012, 40(6):539-542. doi: 10.1130/G32963.1
|
[26] |
Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB): trace element and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-like melts[J]. Earth and Planetary Science Letters, 1987, 82(3-4):241-254. doi: 10.1016/0012-821X(87)90199-3
|
[27] |
Hawkins J W, Melchior J T. Petrology of Mariana Trough and Lau basin basalts[J]. Journal of Geophysical Research, 1985, 90(B13):11431-11468. doi: 10.1029/JB090iB13p11431
|
[28] |
来志庆. 马里亚纳海槽中段深部岩浆作用过程研究[D]. 中国海洋大学博士学位论文, 2019
LAI Zhiqing. Magma formation and evolution in the Middle Mariana Trough[D]. Doctor Dissertation of Ocean University of China, 2019.
|
[29] |
Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[M]//Eiler J. Inside the Subduction Factory. Washington: American Geophysical Union, 2004: 175-222.
|
[30] |
Pearce J A, Kempton P D, Nowell G M, et al. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems[J]. Journal of Petrology, 1999, 40(11):1579-1611. doi: 10.1093/petroj/40.11.1579
|
[31] |
Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1-2):53-72. doi: 10.1016/j.jpgl.2004.12.005
|
[32] |
Gribble R F, Stern R J, Newman S, et al. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magmagenesis in back-arc basins[J]. Journal of Petrology, 1998, 39(1):125-154. doi: 10.1093/petroj/39.1.125
|
[33] |
Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9):B09208.
|
[34] |
曹志敏, 安伟, 周美夫, 等. 马里亚纳海槽扩张轴(中心)玄武岩铂族元素特征[J]. 海洋学报, 2006, 28(5):69-75
CAO Zhimin, AN Wei, ZHOU Meifu, et al. Characteristics of platinum-group elements in Mariana Trough basalts[J]. Acta Oceanologica Sinica, 2006, 28(5):69-75.
|
[35] |
Ohara Y, Stern R J, Ishii T, et al. Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin[J]. Contributions to Mineralogy and Petrology, 2002, 143(1):1-18. doi: 10.1007/s00410-001-0329-2
|
[36] |
Sinton J M, Fryer P. Mariana Trough lavas from 18°N: implications for the origin of back arc basin basalts[J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B12):12782-12802. doi: 10.1029/JB092iB12p12782
|
[37] |
Li X H, Yan Q S, Zeng Z G, et al. Across-arc variations in Mo isotopes and implications for subducted oceanic crust in the source of back-arc basin volcanic rocks[J]. Geology, 2021, 49(10):1165-1170. doi: 10.1130/G48754.1
|
[38] |
Wiens D A, Kelley K A, Plank T. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry[J]. Earth and Planetary Science Letters, 2006, 248(1-2):30-42. doi: 10.1016/j.jpgl.2006.04.011
|
[39] |
Matsuno T, Seama N, Shindo H P, et al. Enhanced and asymmetric melting beneath the southern Mariana back-arc spreading center under the influence of Pacific plate subduction[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(3):e2021JB022374. doi: 10.1029/2021JB022374
|
[40] |
Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4):3-1-3-13.
|
[41] |
Yan Q S, Meng X W, Shi X F. Geochemical and Sr-Nd-Hf-Pb isotopic constraints the petrogenesis and origin of basalts from the southern Okinawa Trough[J]. Acta Geologica Sinica:English Edition, 2019, 93(S2):116-119. doi: 10.1111/1755-6724.14216
|
[42] |
Ikeda Y, Nagao K, Ishii T, et al. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc–Trough system: evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics[J]. Island Arc, 2016, 25(4):253-273. doi: 10.1111/iar.12150
|
[43] |
Masuda H, Fryer P. Geochemical characteristics of active backarc basin volcanism at the southern end of the Mariana Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 261-273.
|
[44] |
Chen Z X, Chen J B, Zeng Z G, et al. Zinc isotopes of the Mariana and Ryukyu arc-related lavas reveal recycling of forearc serpentinites into the subarc mantle[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(11):e2021JB022261. doi: 10.1029/2021JB022261
|
[45] |
徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 2020, 50(12): 1818-1844
XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 63(12): 1969-1991.
|
[46] |
Ribeiro J M, Stern R J, Martinez F, et al. Asthenospheric outflow from the shrinking Philippine Sea Plate: evidence from Hf–Nd isotopes of southern Mariana lavas[J]. Earth and Planetary Science Letters, 2017, 478:258-271. doi: 10.1016/j.jpgl.2017.08.022
|
[47] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[48] |
Niu Y L, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective[J]. Journal of Petrology, 2003, 44(5):851-866. doi: 10.1093/petrology/44.5.851
|
[49] |
张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(2):234-248
ZHANG Pingyang, YAN Quanshu. Compositions of plagioclase hosted by basaltic rocks from the Mariana Trough and their petrogenesis significances[J]. Advances in Marine Science, 2017, 35(2):234-248.
|
[50] |
Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(1):1013.
|
[51] |
Newman S, Macdougall J D, Finkel R C. 230Th-238U disequilibrium in island arcs: evidence from the Aleutians and the Marianas[J]. Nature, 1984, 308(5956):268-270. doi: 10.1038/308268a0
|
[52] |
孙海青, 高爱国, 倪培, 等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004, 22(3):292-298
SUN Haiqing, GAO Aiguo, NI Pei, et al. A preliminary study on melt inclusions in basalts from the Mariana Trough[J]. Advances in Marine Science, 2004, 22(3):292-298.
|
[53] |
Chen Z X, Chen J B, Tamehe L S, et al. Light Fe isotopes in arc magmas from cold subduction zones: implications for serpentinite-derived fluids oxidized the sub-arc mantle[J]. Geochimica et Cosmochimica Acta, 2023, 342:1-14. doi: 10.1016/j.gca.2022.12.005
|
1. |
孙冰洁,刘升发,SEDDIQUE Ashraf Ali,齐文菁,张辉,曹鹏,吴凯凯,单新,石学法. 恒河水下三角洲表层沉积物稀土元素组成及输运模式. 海洋科学进展. 2025(01): 165-178 .
![]() | |
2. |
于世磊,朱龙海,胡日军,刘营,林超然. 北黄海南部近岸海域表层沉积物稀土元素分布特征及影响因素. 海洋地质前沿. 2024(12): 89-99 .
![]() | |
3. |
王中波,田浩正,武宗荟,王保军,王洋,褚宏宪,温珍河,李杰,张训华. 中国-东盟海区及邻域表层沉积物类型研究现状与展望. 海洋地质与第四纪地质. 2023(03): 49-60 .
![]() | |
4. |
王伟力,林彩,刘洋,林辉. 厦门湾海洋生物体中稀土元素含量水平、分布模式及健康风险评价. 海洋开发与管理. 2023(07): 63-69 .
![]() | |
5. |
阎琨,庞国涛,邢新丽,李伟,杨源祯,鲍宽乐. 广西三娘湾准残留沉积——来自端元分析和稀土元素地球化学的证据. 海洋地质前沿. 2023(09): 25-34 .
![]() | |
6. |
谭龙,刘建国,黄云,Md Hafijur Rahaman Khan,徐政,刘升发,石学法. 孟加拉湾中部沉积物地球化学特征及其古海洋学意义. 矿物岩石地球化学通报. 2023(04): 786-795+683 .
![]() | |
7. |
齐文菁,李小艳,范德江,张辉,殷征欣,刘升发. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义. 海洋地质与第四纪地质. 2022(02): 92-100 .
![]() | |
8. |
官玉龙,陈亮,姜兆霞,李三忠,肖春凤,陈龙. 东北印度洋源汇过程及古环境与古季风演化. 地学前缘. 2022(05): 102-118 .
![]() |