CHEN Mengsha, HUANG Baoqi. EVOLUTION OF EARLY PLEISTOCENE DEEP WATER CIRCULATION IN WESTERN PACIFIC: EVIDENCE FROM BENTHIC FORAMINIFERA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 97-105. DOI: 10.3724/SP.J.1140.2012.04097
Citation: CHEN Mengsha, HUANG Baoqi. EVOLUTION OF EARLY PLEISTOCENE DEEP WATER CIRCULATION IN WESTERN PACIFIC: EVIDENCE FROM BENTHIC FORAMINIFERA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 97-105. DOI: 10.3724/SP.J.1140.2012.04097

EVOLUTION OF EARLY PLEISTOCENE DEEP WATER CIRCULATION IN WESTERN PACIFIC: EVIDENCE FROM BENTHIC FORAMINIFERA

More Information
  • Received Date: July 05, 2012
  • Revised Date: July 16, 2012
  • Benthic foraminifera picked out from the interval of 43.02~26.27 mbsf (meters below seafloor) of ODP 807(3°36.42'N,156°37.49'E,water depth 2 803.8 m,length 822.9 m)on the Ontong-Java Plateau, western Pacific was studied for understanding the changes in paleoproductivity and its relation with deep water circulation during the period of 2.5~1.6 MaBP. The benthic foraminifera accumulation rate (BFAR), Epifaunal/Infaunal ratio (E/I), percentage of Uvigerina spp. and total organic carbon (TOC%) were used as the proxies of paleoproductivity in this study. Results show that the change in paleoproductivity was generaly high in glacials but low in interglacials during the period of 2.5~1.6 MaBP., except Bulimina alazanensis, of which the paleopruductivity was low in glacials but high in interglacials. It may suggest that B. alazanensis, opposite to the others, preferred a warmer environment with lower nutrients. The benthic foraminiferal fauna was dominated by Uvigerina spp. in the samples, indicating that the western Pacific deep water was under the control of the North Pacific Deep Water Mass during Early Pleistocene.
  • [1]
    Haywood A M, Dowsett H J, Valdes P J, et al. Introduction. Pliocene climate, processes and problems[J]. Philosophical Transactions, 2009, 367:3-17.
    [2]
    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001. 292:686-693.
    [3]
    Wara M W, Ravelo A C, Delaney M L. Permanent El Ni No-like conditions during the Pliocene warm period[J]. Science, 2005, 309:758-761.
    [4]
    Russon T, Elliot M, Kissel C, et al. Middle-late Pleistocene deep water circulation in the southwest subtropical Pacific[J]. Paleoceanography, 2009, 24:PA4205:1-16.
    [5]
    Clark P U, Alley R B, Pollard D. Northern Hemisphere Ice-Sheet Influences on Global Climate Change[J]. Science, 1999, 286:1104-1111.
    [6]
    马文涛, 田军, 李前裕, 晚上新世赤道太平洋气候转型和北极冰盖扩张的轨道驱动[J]. 科学通报, 2009, 54(22):3537-3545.

    [MA Wentao, TIAN Jun, LI Qianyu. Astronomically modulated late Pliocene equatorial Pacific climate transition and Northern Hemisphere ice sheet expansion[J]. Chinese Science Bulletin, 2010, 55(2):212-220.]
    [7]
    Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago[J]. Nature, 2005, 433:821-825.
    [8]
    Russon T, Elliot M, Sadekov A, et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool[J]. Geophysical Research Letters, 2010, 37:L11601, 1-5.
    [9]
    金海燕, 翦知湣, 成鑫荣, 等.早更新世赤道太平洋上部水体结构的东西向不对称格局的形成[J]. 科学通报,2011,56(20):1635-1641.

    [JIN Haiyan, JIAN Zhimin, CHENG Xinrong, et al. Early Pleistocene formation of the asymmetric east-west pattern of upper water structure in the equatorial Pacific Ocean[J]. Chinese Science Bulletin, 2011, 56(21):2251-2257.]
    [10]
    Marlow J R, Lange C B, Wefer G, et al. Upwelling intensification as part of the Pliocene-Pleistocene climate transition[J]. Science, 2000, 290:2288-2291.
    [11]
    Kwiek P B,Ravelo A C. Pacific Ocean intermediate and deep water circulation during the Pliocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154:191-217.
    [12]
    Prentice M L, Friez J K, Simonds G G, et al. Neogene trends in planktonic foraminifer δ18O from site 807:implications for globalice volume and western equatorial Pacific sea surface temperatures[A]//Proceedings of the Ocean Drilling Program, Scientific Result[C]. College Station,Texas:Ocean Drill. Prog., 1993, 281-305.
    [13]
    Sliva I P. Paleocene through middle Eocene planktonic foraminifers from Hole 807C, Ontong Java Plateau[A].Proceedings of the Ocean Drilling Program, Scientific Result[C]. College Station,Texas:Ocean Drill. Prog., 1993,103-111.
    [14]
    Gourlan A T, Meynadier L, All gre C J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma:Neodymium isotope evidence[J]. Earth and Planetary Science Letters, 2008, 267(1-2):353-364.
    [15]
    Fantlea M S,DePaoloa D J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A:The Ca2+(aq) calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2524-2546.
    [16]
    Houedec S L, Meynadier L, Allegre C J. 80 Myrhigh resolution Nd isotopes record in Western Pacific (ODP 807)[J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73:A741.
    [17]
    金海燕, 翦知湣, 刘东升. 西太平洋翁通-爪哇海台晚第四纪浮游有孔虫群与古温度变化[J]. 海洋地质第四纪地质, 2003, 23(4):65-71.

    [JIN Haiyan, JIAN Zhimin, LIU Dongsheng. Late quaternary variations of plaktonic foraminiferal assemblage and paleo-temperature of Ontong-Java plateau, west Pacific[J]. Marine Geology & Quaternary Geology, 2003, 23(4):65-71.]
    [18]
    张江勇, 汪品先, 成鑫荣, 等. 赤道西太平洋晚第四纪古生产力变化:ODP807A孔的记录[J]. 地球科学——中国地质大学学报, 2007, 32(3):303-312.

    [ZHANG Jiangyong, WANG Pinxian, CHENG Xinrong, et al. Late Quaternary variations of productivity in the western Equatorial Pacific Ocean:Records from ODP Hole 807A[J]. Earth Science-Journal of China University of Geoscience, 2007, 32(3):303-312.]
    [19]
    刘传联, 张拭颖, 金海燕, 等. 暖池区1.53Ma以来上层海水变化的颗石藻证据[J]. 同济大学学报(自然科学版), 2005, 33(9

    ):1172-1176.[LIU Chuanlian, ZHANG Shiying, JIN Haiyan, et al. Coccolith evidence of upper ocean water variations for past 1.53 Ma in western Pacific Warm Pool[J]. Journal of Tongji University(Natural Science), 2005, 33(9):1172-1176.]
    [20]
    吴旻哲, 乔培军, 邵磊. 西太平洋807A孔的元素地球化学特征及其对中更新世气候转型期的记录[J]. 海洋地质第四纪地质, 2010. 30(2):67-74.

    [WU Minzhe, QIAO Peijun, SHAO Lei. Element geochemical record of the western Pacific ocean site ODP 807A:implication for the middle Pleistocene climate transition[J]. Marine Geology & Quaternary Geology, 2010, 30(2):67-74.]
    [21]
    Zhang J, Wang P, Li Q, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr:Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007, 64:121-140.
    [22]
    Keigwin L D. North Pacific deep water formation during the latest glaciation[J]. Nature, 1987, 330:362-364.
    [23]
    Shipboard Scientific Party. Site 807[A]//Proceedings of the Ocean Drilling Program, Initial Report[C]. College Station,Texas:Ocean Drill. Prog., 1991, 369-493.
    [24]
    Loeblich A R, Tappan J H. Foraminiferal Genera and Their Classification[M]. New York:Van nostrand reinhold company, 1988.
    [25]
    Ujiie H. Bathyal Benthic Foraminifera in a Piston Core East off the Miyako Islands, Ryukyu Island Arc[M]. Ryukyus:Bull. Coll. Sci. Univ., 1990, 49:1-60.
    [26]
    Lutze G F. Depth distribution of benthic foraminifera on the continental margin of northwest Africa[J].Meteor' Forschungsergeb. Reihe C, 1980, 28:133-169.
    [27]
    Corliss B H, Chen C. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implication[J]. Geology, 1988, 16:716-719.
    [28]
    Herguera J C, Berger W H. Paleoproductivity from benthic foraminifera abundance:Glacial to postglacial change in the west-equatorial[J]. Geology, 1991, 19(12):1173-1176.
    [29]
    Hergrera J C. Last glacial paleoproductivity patterns in the eastern equatorial Pacific, benthic foraminifira records[J]. Marine Micropaleontology, 2000, 40:259-275.
    [30]
    Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22(8):719-722.
    [31]
    Li Q, McGowran B. Miocene upwelling events:Neritic foraminiferal evidence from southern Australia[J]. Australian Journal of Earth Sciences, 1994, 41(6):593-603.
    [32]
    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20:PA1003:1-17.
    [33]
    Lisiecki L E, Lisiecki P A. Application of dynamic programming to the correlation of paleoclimate records[J]. Paleoceanography, 2002, 17(4):1049:1-12.
    [34]
    郭建卿, 成鑫荣, 陈荣华, 等. 西太平洋暖池核心区上新世以来浮游有孔虫氧同位素特征及古海洋变化[J]. 海洋地质第四纪地质, 2010, 30(3):87-95.

    [GUO Jianqing, CHENG Xinrong, CHEN Ronghua, et al. Oxygen isotope characteristic and paleoceanographic riations of the western Pacific warm pool since Pliocene[J]. Marine Geology & Quaternary Geology, 2010, 30(3):87-95.]
    [35] 杜江辉. 早更新世西太平洋深层水环流的变化[D].北京:北京大学地球与空间科学学院硕士论文.[DU Jianghui. Western Pacific Deep Water Circulation in Early Pleistocene[D]. 2011, Beijing:Master's Thesis of School of Earth and Space Science, Peking University, 2011.]
    [36]
    Gupta A K, Sarkar S, Mukherjee B. Paleoceanographic changes during the past 1.9 Myr at DSDP Site 238, Central Indian Ocean Basin:Benthic foraminiferal proxies[J]. Marine Micropaleontology, 2006, 60:157-166.
    [37]
    陈双喜, 南青云, 李铁刚, 等. 高有机质输入对底栖有孔虫的抑制作用-以西北太平洋菲律宾海MD06-3054孔为例[J]. 第四纪研究, 2011, 31(2):292-298.

    [CHEN Suangxi, NAN Qanqingyun, LI Tiegang, et al. Inhibiting effect of high organic matter influx on the bloom of benthic foraminifera fauna-an example from core MD06-3054 in Philippine Sea, northwestern Pacific[J]. Quaternary Sciences, 2011, 31(2):292-298.]
    [38]
    Stax R, Stein R. Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java plateau[A].Proceedings of the Ocean Drilling Program, Scientific Result[C]. College Station,Texas:Ocean Drill. Prog., 1993, 573-584.
    [39]
    Resig J M, Cheong H-K. Pliocene-Holocene Benthic foraminiferal assemblages and water mass history,ODP806B,western equatorial Pacific[J]. Micropaleontology, 1997, 43(4):419-439.
    [40]
    Wang P X, Li Q Y, The South China Sea Paleoceanoggraphy and Sedimentology[M], Springer, 2009, Vol.13.
    [41]
    黄宝琦, 翦知湣, 汪品先, 晚上新世南海北部底栖有孔虫Bulimina alazanensis含量变化及其原因探讨[J]. 科学通报, 2007, 52:313-317.[Huang Baoqi, JIAN Zhimin, WANG Pinxian. Benthic foraminiferal fauna turnover at 2.

    1 Ma in the northern South China Sea[J]. Chinese Science Bulletin, 2007, 51(6):839-843.]
    [42]
    Hess S, Kuhnt W. Neogene and Quaternary paleoceanographic changes in the southern South China Sea (Site 1143):the benthic foraminiferal record[J]. Marine Micropaleontology, 2005, 54:63-87.
    [43]
    Altenbach A V, Pflaumann U, Schiebel R, et al. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon[J]. Journal of Foraminiferal Research, 1999, 29(3):173-185.
    [44]
    Wang L W, Lin H L. Data report:carbonate and organic carbon contents of sediments from sites 1143 and 1146 in the South China Sea[A]//Proceedings of the Ocean Drilling Program, Scientific Results[C]. Texas A & M University:Ocean Drilling Program, 2002, 1-9.
    [45]
    黄宝琦, 成鑫荣, 翦知湣, 等. 晚上新世以来南海北部上部水体结构变化及东亚季风演化[J]. 第四纪研究, 2004, 24(1):110-115.

    [HUANG Bbaoqi, CHENG Xinrong, JIAN Zhimin, et al. Variations in upper ocean structure in the South China Sea and the evolution of the east Asian monsoons since late Pliocene[J]. Quaternary Sciences, 2004, 24(1):110-115.]
    [46]
    An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.
    [47]
    李铁刚, 赵京涛, 孙荣涛, 等. 250kaB.P.以来西太平洋暖池中心区——Ontong Java海台古生产力演化[J]. 第四纪研究, 2008, 28(3):447-457.

    [LI Tiegang, ZHAO Jingtao, SUN Rongtao, et al. Paleopriductivity evolution in the Ontong Java Plateau——center of the western Pacific warm pool During the last 250ka[J]. Quaternary Sciences, 2008, 28(3):447-457.]
    [48]
    Heinz P,Hemleben C. Regional and seasonalvariations of recentbenthicdeep-seaforaminifera in the ArabianSea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2003, 50(3):435-477.
    [49]
    Kurbjeweit F, Schmiedl G, Schiebel R, et al. Distribution, biomass and diversity of benthic foraminifera in relation to sediment geochemistry in the Arabian Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2000, 47(14):2913-2955.
    [50]
    Heinz P, Hemleben C. Foraminiferal response to the Northeast Monsoon in the western and southern Arabian Sea[J]. Marine Micropaleontology, 2006, 58(2):103-113.
    [54]
    Licari L, Schumacher S, Wenzh fer F, et al. Communities and microhabitats of living benthic foraminifera from the tropical East Atlantic:impact of different productivity regimes[J]. Journal of Foraminiferal Research, 2003, 33(1):10-31.
    [56]
    Macdonald A M, Mecking S, Robbins P E, et al. The WOCE-era 3-D Pacific Ocean circulation and heat budget[J]. Progress In Oceanography, 2009, 82(4):281-325.
    [57]
    Bostock H C, Opdyke B N, Williams M J M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(7):847-859.
    [58]
    Sokolov S, Rintoul S. Circulation and water masses of the southwest Pacific:WOCE Section P11, Papua New Guinea to Tasmania[J]. Journal of Marine Research, 2000, 58(2):223-268.
    [59]
    Murray J W. Ecology and Palaeoecology of Benthic Foraminifera[M]. Harlow:Longman Scientific & Technical, 1991.
  • Cited by

    Periodical cited type(2)

    1. 解建建,黄素荷,刘硕,尤淼. AVO技术在内蒙古页岩气含气预测中的应用. 能源与节能. 2019(05): 2-5 .
    2. 胡小强,万晓明,简晓玲,沈艳杰. 北黄海盆地某区块火成岩地震识别与预测. 世界地质. 2017(01): 246-254 .

    Other cited types(2)

Catalog

    Article views (2125) PDF downloads (27) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return