Citation: | LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601 |
[1] |
Roedder E. Origin and significance of magmatic inclusions [J]. Bulletin de Minéralogie, 1979, 102(5): 487-510. doi: 10.3406/bulmi.1979.7299
|
[2] |
Sorby H C. On the microscopical, structure of crystals, indicating the origin of minerals and rocks [J]. Quarterly Journal of the Geological Society, 1858, 14(1-2): 453-500. doi: 10.1144/GSL.JGS.1858.014.01-02.44
|
[3] |
Kent A J R. Melt inclusions in basaltic and related volcanic rocks [J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 273-331. doi: 10.2138/rmg.2008.69.8
|
[4] |
Roedder E. Fluid inclusions[M]//Ribbe H P. Review in Mineralogy. Washington DC: Mineralogical Society of America, 1984, 12: 644.
|
[5] |
Li X H, Ren Z Y, Zeng Z G, et al. Petrogenesis of middle Okinawa Trough volcanic rocks: Constraints from lead isotopes in olivine-hosted melt inclusions[J] Chemical Geology, 2020, 543: 119600.
|
[6] |
Zajacz Z, Kovács I, Szabó C, et al. Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary [J]. Journal of Petrology, 2007, 48(5): 853-883. doi: 10.1093/petrology/egm004
|
[7] |
Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1021-1040. doi: 10.1016/j.gca.2006.11.001
|
[8] |
Pettke T, Halter W E, Webster J D, et al. Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods [J]. Lithos, 2004, 78(4): 333-361. doi: 10.1016/j.lithos.2004.06.011
|
[9] |
Halter W E, Pettke T, Heinrich C A, et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification [J]. Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2
|
[10] |
Sobolev A V, Hofmann A W, Nikogosian I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas [J]. Nature, 2000, 404(6781): 986-990. doi: 10.1038/35010098
|
[11] |
Saal A E, Hart S R, Shimizu N, et al. Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia [J]. Science, 1998, 282(5393): 1481-1484. doi: 10.1126/science.282.5393.1481
|
[12] |
Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle [J]. Earth and Planetary Science Letters, 1996, 137(1-4): 45-55. doi: 10.1016/0012-821X(95)00203-O
|
[13] |
Ren Z Y, Ingle S, Takahashi E, et al. The chemical structure of the Hawaiian mantle plume [J]. Nature, 2005, 436(7052): 837-840. doi: 10.1038/nature03907
|
[14] |
Hauri E H, Kent A J R, Arndt N. Melt inclusions at the millennium: toward a deeper understanding of magmatic processes [J]. Chemical Geology, 2002, 183(1-4): 1-3. doi: 10.1016/S0009-2541(01)00368-0
|
[15] |
Andersen T, O'Reilly S Y, Griffin W L. The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism [J]. Contributions to Mineralogy and Petrology, 1984, 88(1-2): 72-85. doi: 10.1007/BF00371413
|
[16] |
Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9
|
[17] |
Frezzotti M L. Silicate-melt inclusions in magmatic rocks: applications to petrology [J]. Lithos, 2001, 55(1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7
|
[18] |
Hansteen T H, Andersen T, Neumann E R, et al. Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism [J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 242-254. doi: 10.1007/BF00310710
|
[19] |
Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals [J]. Earth-Science Reviews, 2003, 63(1-2): 121-144. doi: 10.1016/S0012-8252(03)00034-5
|
[20] |
任钟元, 张乐, 吴亚东, 等. 熔体包裹体在镁铁质火山岩成因研究中的应用[J]. 矿物岩石地球化学通报, 2018, 37(3):395-413. [REN Zhongyuan, ZHANG Le, WU Yadong, et al. Melt inclusions and their applications on the origin of mafic volcanic rocks [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 395-413.
|
[21] |
Danyushevsky L V, Sokolov S, Falloon T J. Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks [J]. Journal of Petrology, 2002, 43(9): 1651-1671. doi: 10.1093/petrology/43.9.1651
|
[22] |
朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 62(9):1340-1350. [ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton [J]. Science China: Earth Sciences, 2019, 62(9): 1340-1350. doi: 10.1007/s11430-018-9356-y
|
[23] |
Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.
|
[24] |
Zheng Y F, Chen Y X. Continental versus oceanic subduction zones [J]. National Science Review, 2016, 3(4): 495-519. doi: 10.1093/nsr/nww049
|
[25] |
Turcotte D L, Schubert G. Geodynamics[M]. 3rd ed. Cambridge: Cambridge University Press, 2014: 626.
|
[26] |
Kerrick D M, Connolly J A D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle [J]. Nature, 2001, 411(6835): 293-296. doi: 10.1038/35077056
|
[27] |
Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust [J]. Earth and Planetary Science Letters, 1994, 121(1-2): 227-244. doi: 10.1016/0012-821X(94)90042-6
|
[28] |
Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Nature, 1993, 362(6422): 739-743. doi: 10.1038/362739a0
|
[29] |
Hickey-Vargas R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes [J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052
|
[30] |
Miyazaki T, Kimura J I, Senda R, et al. Missing western half of the Pacific Plate: geochemical nature of the Izanagi-Pacific Ridge interaction with a stationary boundary between the Indian and Pacific mantles [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3309-3332. doi: 10.1002/2015GC005911
|
[31] |
张国良, 罗青, 陈立辉. 大洋地幔化学组成不均一性成因研究回顾及展望[J]. 海洋地质与第四纪地质, 2017, 37(1):1-13. [ZHANG Guoliang, LUO Qing, CHEN Lihui. Geochemical heterogeneity of oceanic mantle: a review [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 1-13.
|
[32] |
Castillo P R, Lonsdale P F, Moran C L, et al. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec Trench: Implications for the generation of arc lavas [J]. Lithos, 2009, 112(1-2): 87-102. doi: 10.1016/j.lithos.2009.03.041
|
[33] |
Yan Q S, Castillo P R, Shi X F. Geochemistry of basaltic lavas from the southern Lau Basin: Input of compositionally variable subduction components [J]. International Geology Review, 2012, 54(12): 1456-1474. doi: 10.1080/00206814.2012.664031
|
[34] |
Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of the axial ridge of the Mariana Trough backarc spreading center [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 226-250. doi: 10.1016/0012-821X(90)90187-3
|
[35] |
Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: Evidence for heterogeneity and a recycled component in backarc basin mantle [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 251-264. doi: 10.1016/0012-821X(90)90188-4
|
[36] |
Martinez F, Taylor B. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin [J]. Marine Geophysical Researches, 1996, 18(2-4): 203-224. doi: 10.1007/BF00286078
|
[37] |
Nohara M, Hirose K, Eissen J P, et al. The North Fiji Basin basalts and their magma sources: Part II. Sr-Nd isotopic and trace element constraints [J]. Marine Geology, 1994, 116(1-2): 179-195. doi: 10.1016/0025-3227(94)90175-9
|
[38] |
Hawkins J W, Melchior J T. Petrology of Mariana Trough and Lau basin basalts [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B13): 11431-11468.
|
[39] |
Sinton J M, Fryer P. Mariana Trough lavas from 18°N: Implications for the origin of back arc basin basalts [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B12): 12782-12802. doi: 10.1029/JB092iB12p12782
|
[40] |
曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动[J]. 海洋科学集刊, 2016:3-36. [ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, et al. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific [J]. Studia Marina Sinica, 2016: 3-36. doi: 10.12036/hykxjk20160725003
|
[41] |
Beaudoin Y, Scott S D, Gorton M P, et al. Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions [J]. Marine Geology, 2007, 242(4): 271-289. doi: 10.1016/j.margeo.2007.04.004
|
[42] |
Yang K H, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system [J]. Nature, 1996, 383(6599): 420-423. doi: 10.1038/383420a0
|
[43] |
Kamenetsky V S, Binns R A, Gemmell J B, et al. Parental basaltic melts and fluids in eastern Manus backarc basin: Implications for hydrothermal mineralisation [J]. Earth and Planetary Science Letters, 2001, 184(3-4): 685-702. doi: 10.1016/S0012-821X(00)00352-6
|
[44] |
Ren Z Y, Wu Y D, Zhang L, et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions [J]. Geochimica et Cosmochimica Acta, 2017, 208: 63-85. doi: 10.1016/j.gca.2017.01.054
|
[45] |
Metrich N, Clocchiatti R, Mosbah M, et al. The 1989–1990 activity of Etna magma mingling and ascent of H2O-Cl-S rich basaltic magma. Evidence from melt inclusions [J]. Journal of Volcanology and Geothermal Research, 1993, 59(1-2): 131-144. doi: 10.1016/0377-0273(93)90082-3
|
[46] |
Kamenetsky V S, Grütter H, Kamenetsky M B, et al. Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate [J]. Chemical Geology, 2013, 353: 96-111. doi: 10.1016/j.chemgeo.2012.09.022
|
[47] |
Marske J P, Hauri E H, Garcia M O, et al. A potential link between magmatic volatiles and mantle source lithology in the Hawaiian Plume: a view from olivine-hosted melt inclusions and osmium isotopes[C]//AGU Fall Meeting Abstracts. AGU, 2013.
|
[48] |
Head E M, Shaw A M, Wallace P J, et al. Insight into volatile behavior at Nyamuragira volcano (D. R. Congo, Africa) through olivine‐hosted melt inclusions [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(10): Q0AB11.
|
[49] |
Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle [J]. Nature, 2002, 419(6906): 451-455. doi: 10.1038/nature01073
|
[50] |
Sisson T W, Bronto S. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia [J]. Nature, 1998, 391(6670): 883-886. doi: 10.1038/36087
|
[51] |
Kilgour G, Blundy J, Cashman K, et al. Small volume andesite magmas and melt–mush interactions at Ruapehu, New Zealand: evidence from melt inclusions [J]. Contributions to Mineralogy and Petrology, 2013, 166(2): 371-392. doi: 10.1007/s00410-013-0880-7
|
[52] |
Witham F. Conduit convection, magma mixing, and melt inclusion trends at persistently degassing volcanoes [J]. Earth and Planetary Science Letters, 2011, 301(1-2): 345-352. doi: 10.1016/j.jpgl.2010.11.017
|
[53] |
Kent A J R, Darr C, Koleszar A M, et al. Preferential eruption of andesitic magmas through recharge filtering [J]. Nature Geoscience, 2010, 3(9): 631-636. doi: 10.1038/ngeo924
|
[54] |
Halter W E, Heinrich C A, Pettke T. Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions [J]. Mineralium Deposita, 2005, 39(8): 845-863.
|
[55] |
Harvey J, Yoshikawa M, Hammond S J, et al. Deciphering the trace element characteristics in Kilbourne Hole peridotite xenoliths: melt–rock interaction and metasomatism beneath the Rio Grande Rift, SW USA [J]. Journal of Petrology, 2012, 53(8): 1709-1742. doi: 10.1093/petrology/egs030
|
[56] |
Schiavi F, Kobayashi K, Nakamura E, et al. Trace element and Pb–B–Li isotope systematics of olivine-hosted melt inclusions: insights into source metasomatism beneath Stromboli (southern Italy) [J]. Contributions to Mineralogy and Petrology, 2012, 163(6): 1011-1031. doi: 10.1007/s00410-011-0713-5
|
[57] |
Johnson E R, Wallace P J, Granados H D, et al. Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models [J]. Journal of Petrology, 2009, 50(9): 1729-1764. doi: 10.1093/petrology/egp051
|
[58] |
Araújo D P, Griffin W L, O'Reilly S Y. Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton [J]. Lithos, 2009, 112(S2): 675-682.
|
[59] |
Zelenski M, Kamenetsky V S, Mavrogenes J A, et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts [J]. Chemical Geology, 2018, 478: 102-111. doi: 10.1016/j.chemgeo.2017.09.013
|
[60] |
Kamenetsky V S, Zelenski M, Gurenko A, et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt [J]. Chemical Geology, 2017, 471: 92-110. doi: 10.1016/j.chemgeo.2017.09.019
|
[61] |
Borisova A Y, Thomas R, Salvi S, et al. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility [J]. Mineralogical Magazine, 2012, 76(1): 91-113. doi: 10.1180/minmag.2012.076.1.91
|
[62] |
Hidas K, Guzmics T, Szabó C, et al. Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary) [J]. Chemical Geology, 2010, 274(1-2): 1-18. doi: 10.1016/j.chemgeo.2010.03.004
|
[63] |
Zajacz Z, Halter W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile) [J]. Earth and Planetary Science Letters, 2009, 282(1-4): 115-121. doi: 10.1016/j.jpgl.2009.03.006
|
[64] |
Lowenstern J B, Audétat A. Using melt inclusions and fluid inclusions to track ore-metal behavior in magma-hydrothermal systems[C]//AGU Fall Meeting Abstracts. AGU, 2013.
|
[65] |
Severs M J, Beard J S, Fedele L, et al. Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions [J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2123-2141. doi: 10.1016/j.gca.2009.01.009
|
[66] |
张春来, 刘勇胜, 高山, 等. 四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示[J]. 地球化学, 2011, 40(2):109-125. [ZHANG Chunlai, LIU Yongsheng, GAO Shan, et al. Chemical compositions of phenocryst-hosted melt inclusions from the Sihetun basalt: Implications for the magma evolution [J]. Geochimica, 2011, 40(2): 109-125.
|
[67] |
李霓, 孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报, 2018, 37(3):414-423. [LI Ni, SUN Jiaxiang. A review on research progress of melt inclusion in volcanic rocks [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 414-423.
|
[68] |
孙贺. 熔体包裹体和Li同位素在地球科学研究中的应用[D]. 合肥: 中国科学技术大学博士学位论文, 2014.
SUN He. Application of melt inclusions and Li isotope in earth sciences[D]. Hefei: Doctor Dissertation of University of Science and Technology of China, 2014.
|
[69] |
张乐, 夏小平, 杨晴, 等. 大型离子探针分析熔体包裹体微量元素组成[J]. 地球化学, 2019, 48(1):1-8. [ZHANG Le, XIA Xiaoping, YANG Qing, et al. Determination of trace elements in melt inclusions by secondary ion mass spectrometry [J]. Geochimica, 2019, 48(1): 1-8.
|
[70] |
Zhang L, Ren Z Y, Xia X P, et al. In situ determination of trace elements in melt inclusions using laser ablation inductively coupled plasma sector field mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2019, 33(4): 361-370.
|
[71] |
张乐, 任钟元, 钱生平, 等. LA-MC-ICPMS分析古老熔体包裹体Pb同位素组成中的误差评价[J]. 岩矿测试, 2015, 34(4):399-407. [ZHANG Le, REN Zhongyuan, QIAN Shengping, et al. Evaluation of Error propagation in lead isotope analysis of ancient melt inclusions by LA-MC-ICP-MS [J]. Rock and Mineral Analysis, 2015, 34(4): 399-407.
|
[72] |
Zhang L, Ren Z Y, Nichols A R L, et al. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1393-1405. doi: 10.1039/C4JA00088A
|
[73] |
Liu J Q, Ren Z Y, Nichols A R L, et al. Petrogenesis of late cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines [J]. Geochimica et Cosmochimica Acta, 2015, 152: 89-121. doi: 10.1016/j.gca.2014.12.023
|
[74] |
Qian S P, Ren Z Y, Zhang L, et al. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source [J]. Chemical Geology, 2015, 401: 111-125. doi: 10.1016/j.chemgeo.2015.02.018
|
[75] |
Duan X Z, Sun H, Yang W, et al. Melt–peridotite interaction in the shallow lithospheric mantle of the North China Craton: evidence from melt inclusions in the quartz-bearing orthopyroxene-rich websterite from Hannuoba [J]. International Geology Review, 2014, 56(4): 448-472. doi: 10.1080/00206814.2013.873357
|
[76] |
Qian S P, Ren Z Y, Richard W, et al. Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(3): 1900-1918.
|
[77] |
Sun H, Xiao Y L, Gao Y J, et al. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction [J]. Contributions to Mineralogy and Petrology, 2013, 165(5): 885-901. doi: 10.1007/s00410-012-0840-7
|
[78] |
Zhang Y H, Ren Z Y, Hong L B, et al. Differential partial melting process for temporal variations of Shandong basalts revealed by melt inclusions and their host olivines [J]. Gondwana Research, 2017, 49: 205-221. doi: 10.1016/j.gr.2017.05.019
|
[79] |
Nielsen R L, Michael P J, Sours-Page R. Chemical and physical indicators of compromised melt inclusions [J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 831-839. doi: 10.1016/S0016-7037(98)00024-6
|
[80] |
丁一, 刘吉强, 宗统, 等. 熔体包裹体挥发分应用的研究进展[J]. 岩石矿物学杂志, 2019, 38(6):897-913. [DING Yi, LIU Jiqiang, ZONG Tong, et al. A review on the application of volatiles in melt inclusions [J]. Acta Petrologica et Mineralogical, 2019, 38(6): 897-913. doi: 10.3969/j.issn.1000-6524.2019.06.018
|
[81] |
李晓辉. 冲绳海槽岩浆的演化过程及其俯冲组分特征: 熔体包裹体指示[D]. 青岛: 中国科学院大学(中国科学院海洋研究所) 博士学位论文, 2019.
LI Xiaohui. Evolution process of magma in the Okinawa Trough and its subduction composition characteristics: melt inclusion indication[D]. Qingdao: Doctor Dissertation of University of Chinese Academy of Sciences, Institute of Oceanology, Chinese Academy of Sciences, 2019.
|
[82] |
王蝶, 卢焕章, 单强. 岩浆熔体包裹体研究进展[J]. 岩石学报, 2017, 33(2):653-666. [WANG Die, LU Huanzhang, SHAN Qiang. Advances on melt inclusion studies [J]. Acta Petrologica Sinica, 2017, 33(2): 653-666.
|
[83] |
张道涵, 魏俊浩, 付乐兵, 等. 熔体包裹体的形成、改造和分析方法及其矿床学应用[J]. 地球科学——中国地质大学学报, 2017, 42(6):990-1007. [ZHANG Daohan, WEI Junhao, FU Lebing, et al. Formation, modification and analytical techniques of melt inclusion, and their applications in economic geology [J]. Earth Science——Journal of China University of Geosciences, 2017, 42(6): 990-1007. doi: 10.3799/dqkx.2017.079
|
[84] |
赵令浩, 詹秀春, 胡明月, 等. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用[J]. 岩矿测试, 2013, 32(1):1-14. [ZHAO Linghao, ZHAN Xiuchun, HU Mingyue, et al. Laser ablation-inductively coupled plasma-mass spectrometric analysis methods of melt inclusions and its geological applications [J]. Rock and Mineral Analysis, 2013, 32(1): 1-14. doi: 10.3969/j.issn.0254-5357.2013.01.002
|
[85] |
郭玲利, 魏俊浩, 周圣华. 单矿物中熔体包裹体研究进展及地质指示意义[J]. 地质与勘探, 2009, 45(1):36-40. [GUO Lingli, WEI Junhao, ZHOU Shenghua. Research progress and geological significance of melt inclusions in single mineral [J]. Geology and Exploration, 2009, 45(1): 36-40.
|
[86] |
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7):737-750. [SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific [J]. Advances in Earth Science, 2013, 28(7): 737-750. doi: 10.11867/j.issn.1001-8166.2013.07.0737
|
[87] |
Hoang N, Uto K. Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 229-240. doi: 10.1016/j.jpgl.2006.07.021
|
[88] |
Guo K, Zhai S K, Yu Z H, et al. Sr–Nd–Pb isotopic geochemistry of phenocrysts in pumice from the central Okinawa Trough [J]. Geological Journal, 2016, 51(S1): 368-375.
|
[89] |
Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa trough system: Evidence from thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035
|
[90] |
Guo K, Zhai S K, Yu Z H, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials [J]. Journal of Marine Systems, 2018, 180: 140-151. doi: 10.1016/j.jmarsys.2016.11.009
|
[91] |
Pi J L, You C F, Wang K L. The influence of Ryukyu subduction on magma genesis in the Northern Taiwan Volcanic Zone and Middle Okinawa Trough—Evidence from boron isotopes [J]. Lithos, 2016, 260: 242-252. doi: 10.1016/j.lithos.2016.06.007
|
[92] |
Li X H, Zeng Z G, Yang H X, et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection [J]. Geological Journal, 2019, 54(3): 1160-1189. doi: 10.1002/gj.3217
|
[93] |
Li X H, Zeng Z G, Chen S, et al. Geochemical and Sr–Nd–Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source [J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8
|
[94] |
Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component [J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320
|
[95] |
Li X H, Zeng Z G, Dan W, et al. Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back-arc basin [J]. Lithos, 2020, 360-361: 105444. doi: 10.1016/j.lithos.2020.105444
|
[96] |
Shinjo R. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system [J]. Chemical Geology, 1999, 157(1-2): 69-88. doi: 10.1016/S0009-2541(98)00199-5
|
[97] |
Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2
|
[98] |
Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin [J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7
|
[99] |
于增慧, 翟世奎, 赵广涛. 冲绳海槽浮岩中岩浆包裹体岩石化学成分特征[J]. 海洋与湖沼, 2001, 32(5):474-482. [YU Zenghui, ZHAI Shikui, ZHAO Guangtao. The petrochemical feature of melt inclusion in acid pumice in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2001, 32(5): 474-482. doi: 10.3321/j.issn:0029-814X.2001.05.002
|
[100] |
Li X H, Zeng Z G, Wang X Y, et al. Petrogenesis of basalt from the middle Okinawa Trough: New insights from olivine-hosted melt inclusions [J]. Geological Journal, 2018, 53(6): 3129-3146. doi: 10.1002/gj.3150
|
[101] |
Tian L Y, Castillo P R, Hawkins J W, et al. Major and trace element and Sr–Nd isotope signatures of lavas from the Central Lau Basin: implications for the nature and influence of subduction components in the back-arc mantle [J]. Journal of Volcanology and Geothermal Research, 2008, 178(4): 657-670. doi: 10.1016/j.jvolgeores.2008.06.039
|
[102] |
鄢全树, 石学法, 李乃胜. 西南太平洋劳海盆地质学研究进展[J]. 海洋地质与第四纪地质, 2010, 30(1):131-140. [YAN Quanshu, SHI Xuefa, LI Naisheng. Geology of Lau basin in the southwest Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2010, 30(1): 131-140.
|
[103] |
Falloon T J, Malahoff A, Zonenshaina L P, et al. Petrology and geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S [J]. Mineralogy and Petrology, 1992, 47(1): 1-35. doi: 10.1007/BF01165295
|
[104] |
Hilton D R, Hammerschmidt K, Loock G, et al. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin [J]. Geochimica et Cosmochimica Acta, 1993, 57(12): 2819-2841. doi: 10.1016/0016-7037(93)90392-A
|
[105] |
Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga–Kermadec–Lau arc–back-arc systems: the role of varying mantle wedge composition in space and time [J]. Journal of Petrology, 1998, 39(3): 331-368. doi: 10.1093/petroj/39.3.331
|
[106] |
Pearce J A, Ernewein M, Bloomer S H, et al. Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity [J]. Geological Society, London, Special Publications, 1994, 81(1): 53-75. doi: 10.1144/GSL.SP.1994.081.01.04
|
[107] |
Macpherson C G, Mattey D P. Oxygen isotope variations in Lau Basin lavas [J]. Chemical Geology, 1998, 144(3-4): 177-194. doi: 10.1016/S0009-2541(97)00130-7
|
[108] |
Kamenetsky V S, Crawford A J, Eggins S, et al. Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components [J]. Earth and Planetary Science Letters, 1997, 151(3-4): 205-223. doi: 10.1016/S0012-821X(97)81849-3
|
[109] |
Layne G D, Kent A J R, Bach W. δ37Cl systematics of a backarc spreading system: the Lau Basin [J]. Geology, 2009, 37(5): 427-430. doi: 10.1130/G25520A.1
|
[110] |
Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas [J]. Nature, 2003, 422(6929): 294-297. doi: 10.1038/nature01482
|
[111] |
Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions [J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.jpgl.2004.02.011
|
[112] |
Auzende J M, Rissen J P, Lafoy Y, et al. Seafloor spreading in the north Fiji basin (Southwest Pacific) [J]. Tectonophysics, 1988, 146(1-4): 317-352. doi: 10.1016/0040-1951(88)90098-4
|
[113] |
Auzende J M, Pelletier B, Lafoy Y. Twin active spreading ridges in the North Fiji Basin (southwest Pacific) [J]. Geology, 1994, 22(1): 63-66. doi: 10.1130/0091-7613(1994)022<0063:TASRIT>2.3.CO;2
|
[114] |
Danyushevsky L V, Falloon T J, Crawford A J, et al. High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: Evidence for the mantle origin of adakite parental melts [J]. Geology, 2008, 36(6): 499-502. doi: 10.1130/G24349A.1
|
[115] |
Leslie R A J, Danyushevsky L V, Crawford A J, et al. Primitive shoshonites from Fiji: Geochemistry and source components [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07001.
|
[116] |
Zhao G T, Luo W Q, Lai Z Q, et al. Influence of subduction components on magma composition in back‐arc basins: a comparison between the Mariana and Okinawa troughs [J]. Geological Journal, 2016, 51(S1): 357-367.
|
[117] |
Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives [J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63-86.
|
[118] |
Tian L Y, Zhao G T, Zhao G C, et al. Geochemistry of basaltic lavas from the Mariana Trough: evidence for influence of subduction component on the generation of backarc basin magmas [J]. International Geology Review, 2005, 47(4): 387-397. doi: 10.2747/0020-6814.47.4.387
|
[119] |
Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin [J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2153-2166. doi: 10.1016/0016-7037(96)00078-6
|
[120] |
Yan Q S, Zhang P Y, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6): 803-820. doi: 10.1007/s00710-019-00683-x
|
[121] |
Park S H, Lee S M, Kamenov G D, et al. Tracing the origin of subduction components beneath the South East Rift in the Manus basin, Papua New Guinea [J]. Chemical Geology, 2010, 269(3-4): 339-349. doi: 10.1016/j.chemgeo.2009.10.008
|
[122] |
Sinton J M, Ford L L, Chappell B, et al. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea [J]. Journal of Petrology, 2003, 44(1): 159-195. doi: 10.1093/petrology/44.1.159
|
[123] |
Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems [J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1013.
|
[124] |
Parman S W, Grove T L, Kelley K A, et al. Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths [J]. Journal of Petrology, 2011, 52(2): 257-278. doi: 10.1093/petrology/egq079
|
[125] |
Yang K H, Scott S D. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: Evidence from melt inclusions [J]. Economic Geology, 2005, 100(6): 1085-1096. doi: 10.2113/gsecongeo.100.6.1085
|
[126] |
Yang K H, Scott S D. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific [J]. Economic Geology, 2002, 97(5): 1079-1100. doi: 10.2113/gsecongeo.97.5.1079
|
[127] |
Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern Manus basin [J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1542-1552. doi: 10.1016/j.gca.2006.12.003
|
[128] |
Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature, 2004, 431(7011): 975-978. doi: 10.1038/nature02972
|
[129] |
孙海青, 高爱国, 倪培, 等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004, 22(3):292-298. [SUN Haiqing, GAO Aiguo, NI Pei, et al. A preliminary study on melt inclusions in basalts from the mariana trough [J]. Advances in Marine Science, 2004, 22(3): 292-298. doi: 10.3969/j.issn.1671-6647.2004.03.005
|
[130] |
翟世奎, 张杰, 张明书, 等. 冲绳海槽浮岩包裹体的测温试验[J]. 海洋与湖沼, 2001, 32(1):67-73. [ZHAI Shikui, ZHANG Jie, ZHANG Shuming, et al. Temperature measuring test on inclusions in pumice in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2001, 32(1): 67-73. doi: 10.3321/j.issn:0029-814X.2001.01.011
|
[1] | LIANG Xixing, WANG Riming, DAI Zhijun, WANG Jie, HUANG Hu, LI Shushi. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 107-118. DOI: 10.16562/j.cnki.0256-1492.2022091201 |
[2] | LIU Yujia, HAN Zhiyong, LI Xusheng, PAN Yanhong, YANG Qianqian, ZHOU Yuwen. The sea-level highstand of the Changjiang River estuary in the Holocene revealed from tidal bore deposits[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 160-169. DOI: 10.16562/j.cnki.0256-1492.2022030601 |
[3] | DENG Chengwen, ZHANG Xia, LIN Chunming, YU Jin, WANG Hong, YIN Yong. GRAIN-SIZE CHARACTERISTICS AND HYDRODYNAMIC CONDITIONS OF THE CHANGJIANG ESTUARINE DEPOSITS SINCE LAST GLACIAL[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 185-198. DOI: 10.16562/j.cnki.0256-1492.2016.06.021 |
[4] | CAI Qingfang, WANG Feifei, YIN Ping, LIU Dongyan, FAN Daidu. SUBASSEMBLAGES OF BENTHIC FORAMINIFERA AND PALAEOENVIRONMENTAL IMPLICATION IN THE YANGTZE RIVER ESTUARY SINCE HOLOCENE[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 175-184. DOI: 10.16562/j.cnki.0256-1492.2016.06.020 |
[5] | GUO Xingjie, YAN Xuexin, LI Bing, YANG Zhongyong, QIN Qingwen. RIVER REGIME EVOLUTION OF THE SOUTH PASSAGE OF THE YANGTZE ESTUARY AND SUGGESTIONS FOR CHANNEL DEVELOPMENT[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 63-70. DOI: 10.16562/j.cnki.0256-1492.2016.06.008 |
[6] | ZOU Liang, ZHANG Zhizhong, HAN Yue. MAGNETOSTRATIGRAPHY OF CORE DZS2 OFF THE YANGTZE RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 43-52. DOI: 10.3724/SP.J.1140.2015.02043 |
[7] | MI Beibei, LAN Xianhong, ZHANG Zhixun, LIU Shengfa. DISTRIBUTION OF HEAVY METALS IN SURFACE SEDIMENTS OFF YANGTZE RIVER ESTUARY AND ENVIRONMENTAL QUALITY ASSESSMENT[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 47-54. DOI: 10.3724/SP.J.1140.2013.06047 |
[8] | LI Jiasheng, GAO Jianhua, LI Jun, WANG Zhenyan, YAN Jie, BAI Fenglong, CHENG Yan. DISTRIBUTION AND CONTROLLING FACTORS OF MAJOR ELEMENTS IN SEDIMENTS OF THE YALU RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 25-31. DOI: 10.3724/SP.J.1140.2010.01025 |
[9] | HU Gang, LIU Jian, SHI Lianqiang, WU Xiaoyong. COASTAL EROSION OF THE YANGTZE ESTUARY[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 9-15. DOI: 10.3724/SP.J.1140.2009.06009 |
[10] | WANG Shutian, LI Bin. QUATERNARY FAULTS AND NEOTECTONIC MOVEMENT IN THE YANGTZE RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 53-58. DOI: 10.3724/SP.J.1140.2009.01053 |