ZHAO Sixu,ZENG Zhigang. Petrogeochemical characteristics of mantle sources of volcanic rocks in the southern and middle Mariana Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):73-84. DOI: 10.16562/j.cnki.0256-1492.2022112101
Citation: ZHAO Sixu,ZENG Zhigang. Petrogeochemical characteristics of mantle sources of volcanic rocks in the southern and middle Mariana Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):73-84. DOI: 10.16562/j.cnki.0256-1492.2022112101

Petrogeochemical characteristics of mantle sources of volcanic rocks in the southern and middle Mariana Trough

More Information
  • Received Date: November 20, 2022
  • Revised Date: December 13, 2022
  • Accepted Date: December 13, 2022
  • Available Online: March 30, 2023
  • The Mariana Trough, as a typical active back-arc basin, is an ideal place to study the effects of subduction on magmatism and crust-mantle dynamics. The petrogeochemical characteristics of the samples from two areas of the trough were revealed based on the published petrogeochemical data, from which the degree of mantle enrichment/depletion, the degree of mantle melting, the depth of mantle melting, and the degree of subduction material incorporation in the southern and middle Mariana Trough were clarified. Results show that a set of medium-low potassium calc-alkaline series basalt and basaltic andesite occur in the southern and middle Mariana Trough. The volcanic rocks are rich in large ionic lithophile elements (LILE) and light rare earth elements (LREE) while deficient in high field strength elements (HFSE) and heavy rare earth elements (HREE). The Mariana Trough could be divided into three sectors along spreading center, and the mantle-melting degree and the depth of each sector were calculated and the effect of mantle heterogeneity eliminated. The correlation between mantle-melting degree and the depth in each sector was found negative near 15°N and 18°N, but positive in the other areas, which proves that there are two mantle-melting modes in the trough. Volcanic rocks in the southern and middle Mariana Trough are influenced by multiple subduction-components and there may be another water-rich melt end-member in the southern part of the trough that may be resulted from the faster spreading rate of the trough. Calculations of the extent of subduction accretion show that the influence of subduction components weakens near 15°N and 18°N. The variation of volcanic rocks in the Mariana Trough may be caused by the mixing of an N-MORB-like mantle source involved with an island arc-like mantle source. Therefore, subduction material is an important factor on mantle-melting degree, and spreading rate and mantle enrichment/depletion degree are also play an essential roles.
  • [1]
    Fryer P. Basaltic glasses from the Mariana Trough [J]. Init. Rep. Deep Sea Drill. Proj., 1981, 60: 601-609.
    [2]
    Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives [J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63.
    [3]
    Yan Q, Shi X. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2
    [4]
    Taylor B, Martinez F. Back-arc basin basalt systematics [J]. Earth and Planetary Science Letters, 2003, 210(3-4): 481-497. doi: 10.1016/S0012-821X(03)00167-5
    [5]
    Yan Q, Zhang P, Metcalfe I, et al. Geochemistry of axial lavas from the mid-and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6): 803-820. doi: 10.1007/s00710-019-00683-x
    [6]
    张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(02):234-248 doi: 10.3969/j.issn.1671-6647.2017.02.008

    ZHANG Pingyang, YAN Quanshu. Compositions of Plagioclase Hosted by Basaltic Rocks Form the Mariana Trough and Their Petrogenesis Signficances [J]. Advances in Marine Science, 2017, 35(02): 234-248. doi: 10.3969/j.issn.1671-6647.2017.02.008
    [7]
    Lai Z, Zhao G, Han Z, et al. The magma plumbing system in the Mariana Trough back-arc basin at 18° N [J]. Journal of Marine Systems, 2018, 180: 132-139. doi: 10.1016/j.jmarsys.2016.11.008
    [8]
    Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5).
    [9]
    孙海青, 高爱国, 倪培, 张德玉. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004(03):292-298 doi: 10.3969/j.issn.1671-6647.2004.03.005

    SUN Haiqing, GAO Aiguo, NI Pei, et al. A Preliminary study on melt inclusions in basalts from the Mariana trough [J]. Advances in Marine Science, 2004(03): 292-298. doi: 10.3969/j.issn.1671-6647.2004.03.005
    [10]
    Karig D E, Anderson R N, Bibee L D. Characteristics of back arc spreading in the Mariana Trough [J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B3): 1213-1226. doi: 10.1029/JB083iB03p01213
    [11]
    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory [J]. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 2003, 138: 175-222.
    [12]
    Kato T, Beavan J, Matsushima T, et al. Geodetic evidence of back‐arc spreading in the Mariana Trough[J]. Geophysical Research Letters, 2003, 30(12).
    [13]
    Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, geophysics, geosystems, 2005, 6(7).
    [14]
    Martínez F, Fryer P, Baker N A, et al. Evolution of backarc rifting: Mariana Trough, 20–24 N [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B3): 3807-3827. doi: 10.1029/94JB02466
    [15]
    Martinez F, Fryer P, Becker N. Geophysical characteristics of the southern Mariana Trough, 11 50′ N–13 40′ N [J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B7): 16591-16607. doi: 10.1029/2000JB900117
    [16]
    Li X, Yan Q, Zeng Z, et al. Across-arc variations in Mo isotopes and implications for subducted oceanic crust in the source of back-arc basin volcanic rocks [J]. Geology, 2021, 49(10): 1165-1170. doi: 10.1130/G48754.1
    [17]
    BAS M J L E, Maitre R W L, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of petrology, 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745
    [18]
    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks [J]. Canadian journal of earth sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055
    [19]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [20]
    Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4).
    [21]
    Asimow P D, Langmuir C H. The importance of water to oceanic mantle melting regimes [J]. Nature, 2003, 421(6925): 815-820. doi: 10.1038/nature01429
    [22]
    Cushman B, Sinton J , Ito G , et al. Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W[J]. John Wiley and Sons, Ltd, 2004(8).
    [23]
    Langmuir C H, Bezos A, Escrig S, et al. Chemical systematics and hydrous melting of the mantle in back-arc basins [J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 87.
    [24]
    Parman S W, Grove T L, Kelley K A, et al. Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths [J]. Journal of Petrology, 2011, 52(2): 257-278. doi: 10.1093/petrology/egq079
    [25]
    Stolper E, Newman S. The role of water in the petrogenesis of Mariana trough magmas [J]. Earth and Planetary Science Letters, 1994, 121(3-4): 293-325. doi: 10.1016/0012-821X(94)90074-4
    [26]
    Kelley K A, Plank T, Newman S, et al. Mantle melting as a function of water content beneath the Mariana Arc [J]. Journal of Petrology, 2010, 51(8): 1711-1738. doi: 10.1093/petrology/egq036
    [27]
    Niu Y. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites [J]. Journal of Petrology, 1997, 38(8): 1047-1074. doi: 10.1093/petroj/38.8.1047
    [28]
    Turner I M, Peirce C, Sinha M C. Seismic imaging of the axial region of the Valu Fa Ridge, Lau Basin—The accretionary processes of an intermediate back-arc spreading ridge [J]. Geophysical Journal International, 1999, 138(2): 495-519. doi: 10.1046/j.1365-246X.1999.00883.x
    [29]
    Martinez F, Taylor B. Mantle wedge control on back-arc crustal accretion [J]. Nature, 2002, 416(6879): 417-420. doi: 10.1038/416417a
    [30]
    Martinez F, Taylor B. Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins [J]. Geological Society, London, Special Publications, 2003, 219(1): 19-54. doi: 10.1144/GSL.SP.2003.219.01.02
    [31]
    Arai R, Dunn R A. Seismological study of Lau back arc crust: Mantle water, magmatic differentiation, and a compositionally zoned basin [J]. Earth and Planetary Science Letters, 2014, 390: 304-317. doi: 10.1016/j.jpgl.2014.01.014
    [32]
    Jacobs A M, Harding A J, Kent G M. Axial crustal structure of the Lau back-arc basin from velocity modeling of multichannel seismic data [J]. Earth and Planetary Science Letters, 2007, 259(3-4): 239-255. doi: 10.1016/j.jpgl.2007.04.021
    [33]
    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas [J]. Annual review of Earth and planetary sciences, 1995, 23: 251-286. doi: 10.1146/annurev.ea.23.050195.001343
    [34]
    Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes [J]. Earth and Planetary Science Letters, 2001, 192(3): 331-346. doi: 10.1016/S0012-821X(01)00453-8
    [35]
    Duggen S, Portnyagin M, Baker J, et al. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting [J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 452-480. doi: 10.1016/j.gca.2006.09.018
    [36]
    Todd E, Gill J B, Wysoczanski R J, et al. Sources of constructional cross-chain volcanism in the southern Havre Trough: New insights from HFSE and REE concentration and isotope systematics[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4).
    [37]
    Yogodzinski G M, Vervoort J D, Brown S T, et al. Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc [J]. Earth and Planetary Science Letters, 2010, 300(3-4): 226-238. doi: 10.1016/j.jpgl.2010.09.035
    [38]
    Nebel O, Vroon P Z, van Westrenen W, et al. The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia [J]. Earth and Planetary Science Letters, 2011, 303(3-4): 240-250. doi: 10.1016/j.jpgl.2010.12.053
    [39]
    李正刚. 西南太平洋Lau盆地孤后岩浆作用及地幔动力学研究[D]. 浙江大学, 2015

    LI Zhenggang. Magmatism and mantle dynamics in the Lau back-arc basin, SW Pacific[D]. Zhejiang University, 2015.
    [40]
    张平阳. 马里亚纳海槽玄武岩特征及对弧后盆地岩浆作用的指示意义[D]. 国家海洋局第一海洋研究所, 2017

    ZHANG Pingyang. Petrological and Geochemical Studies on Mariana Trough lavas: Implications for Back-arc Basin Magmatic Processes[D]. The First Institute of Oceanography, 2017.
    [41]
    Hellebrand E, Snow J E, Dick H J B, et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites [J]. Nature, 2001, 410(6829): 677-681. doi: 10.1038/35070546
    [42]
    Niu Y, O’Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective [J]. Journal of Petrology, 2008, 49(4): 633-664. doi: 10.1093/petrology/egm051
    [43]
    Herzberg C, Asimow P D. PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(2): 563-578. doi: 10.1002/2014GC005631
    [44]
    Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM) [J]. Earth and Planetary Science Letters, 2005, 231(1-2): 53-72. doi: 10.1016/j.jpgl.2004.12.005
    [45]
    Wang K, Plank T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B1): ECV 5-1-ECV 5-21.
    [46]
    李敏. EPR和SWIR玄武岩岩石地球化学特征对比及其对岩浆过程的指示意义[D]. 中国海洋大学, 2014

    LI Min. Petrogeochemical characteristics comparison and implications for magmatic processes of the MORBs between EPR and SWIR[D]. Ocean University of China, 2014.
    [47]
    Niu Y, Hekinian R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges [J]. Nature, 1997, 385(6614): 326-329. doi: 10.1038/385326a0
    [48]
    Niu Y, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: the East Pacific Rise, 18–19 S [J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B12): 27711-27733. doi: 10.1029/96JB01923
    [49]
    Niu Y, Batiza R. An empirical method for calculating melt compositions produced beneath mid ocean ridges: Application for axis and off axis (seamounts) melting [J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B13): 21753-21777. doi: 10.1029/91JB01933
    [50]
    Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9).
    [51]
    Emily M. Klein, Charles H. Langmuir. Local versus global variations in ocean ridge basalt composition: A reply[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4).
    [52]
    Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust [J]. Earth and planetary science letters, 1994, 121(1-2): 227-244. doi: 10.1016/0012-821X(94)90042-6
    [53]
    Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone [J]. Contributions to mineralogy and petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155
    [54]
    Cai Y, LaGatta A, Goldstein S L, et al. Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs [J]. Chemical Geology, 2014, 377: 45-55. doi: 10.1016/j.chemgeo.2014.04.002
    [55]
    Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Nature, 1993, 362(6422): 739-743. doi: 10.1038/362739a0
    [56]
    Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B7): 14991-15019. doi: 10.1029/97JB00788
    [57]
    Elliott T. Tracers of the slab [J]. Geophysical Monograph-American Geophysical Union, 2003, 138: 23-46.
  • Related Articles

    [1]HU Yanbin, LAI Zhiqing, LI Meng, QIAO Zewen, ZHAO Guangtao, HAN Zongzhu, GUO Kun. Progress of the researches on magmatism in the Mariana Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 64-72. DOI: 10.16562/j.cnki.0256-1492.2023091601
    [2]TONG Hongpeng, HU Haiming, CHEN Linying, CHEN Duofu. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101
    [3]ZHAO Han, ZHANG Guoliang, ZHANG Ji, WANG Shuai. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202
    [4]SONG Zijun, MENG Fanyi, LI Weiding, CHEN Linying, LUO Min. Preliminary study on source and sedimentary environment in the Mariana Trench[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 84-95. DOI: 10.16562/j.cnki.0256-1492.2022031801
    [5]TONG Hongpeng, YAO Kai, CHEN Linying, HU Haiming, CUI Caiying, CHEN Duofu. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 15-26. DOI: 10.16562/j.cnki.0256-1492.2021062501
    [6]BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. DOI: 10.16562/j.cnki.0256-1492.2020073001
    [7]XIAO Chunhui, WANG Yonghong, LIN Jian, TIAN Jiwei. Characteristics of rare earth elements in deep-water sediments in Mariana “Trench-Basin” system and their provenance constraints[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 102-114. DOI: 10.16562/j.cnki.0256-1492.2020040202
    [8]WANG Fenlian, HE Gaowen, WANG Haifeng, REN Jiangbo. GEOCHEMISTRY OF RARE EARTH ELEMENTS IN A CORE FROM MARIANA TRENCH AND ITS SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75. DOI: 10.16562/j.cnki.0256-1492.2016.04.008
    [9]LI Qing, LI Tie-gang, CHANG Feng-ming, CAO Qi-yuan. EVOLUTION OF UPWELLING IN THE NORTH OF THE OKINAWA TROUGH SINCE ABOUT 7 300 aBP[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 65-70.
    [10]CHEN Jun-bing, ZENG Zhi-gang. PETROLOGY AND MINERALOGY OF PERIDOTITES FROM THE SOUTHERN MARIANA FOREARC: IMPLICATION FOR THE METASOMATISM OF THE MANTLE WEDGE UNDER MARIANA ARC[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 53-59.

Catalog

    Article views (998) PDF downloads (43) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return