TONG Hongpeng,HU Haiming,CHEN Linying,et al. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology,2022,42(6):1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101
Citation: TONG Hongpeng,HU Haiming,CHEN Linying,et al. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology,2022,42(6):1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101

Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc

More Information
  • Received Date: May 10, 2022
  • Revised Date: May 30, 2022
  • Available Online: December 25, 2022
  • Authigenic depositions induced by low-temperature alkaline seepage fluids occur on the top of the Mariana forearc serpentinite mud volcanoes, which are archives of the seepage fluids and are significant for studying the material circulation of the subduction zone. However, little is known about the features of the authigenic depositions composed of multiple minerals and their recording of seepage fluids. In this paper, we investigated the petrology, mineralogy and major and trace element compositions of authigenic depositions collected from Conical serpentinite mud volcano in Mariana forearc. The authigenic depositions from Conical serpentinite mud volcano are loose and extremely friable into lamellar and spherical fragments. The lamellar fragments are white, mainly composed of needle-like aragonite and prismatic calcite, with high CaO contents (49.3%~53.3%) and low MgO contents (2.3%~4.5%). The spherical fragments are yellow or white, made of amorphous magnesium silicate, with high MgO contents (25.5%~29.1%) and low CaO contents (0.5%~2.9%). ΣREE of the carbonate fragments range from 227.2 ng/g to 4136.6 ng/g, while the ΣREE of the amorphous magnesium silicate fragments are from 115.4 ng/g to 364.9 ng/g. All samples show flat distribution patterns with slight enrichment of heavy rare earth elements. The rare earth element distribution patterns of authigenic depositions indicate that the contribution of seepage fluids is higher than 90% except for two carbonate samples with relatively high rare earth element contents. This suggests that all samples should form in the intense seepage environments, but the carbonates and magnesium silicates may be induced by varied types of seepage fluid, namely, "low-silica type" and "high-silica type".
  • [1]
    Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. doi: 10.1146/annurev-marine-120710-100922
    [2]
    Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434(3): 106431.
    [3]
    Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
    [4]
    Haggerty J. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: clues for emplacement of the seamounts and their relationship to Forearc Tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T
    [5]
    Fryer P, Wheat C G, Williams T, et al. Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life [J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2020, 378(2165): 20180425. doi: 10.1098/rsta.2018.0425
    [6]
    Parkinson I J, Pearce J A. Peridotites from the Izu-Bonin-Mariana forearc (ODP leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting [J]. Journal of Petrology, 1998, 39(9): 1577-1618. doi: 10.1093/petroj/39.9.1577
    [7]
    Savov I P, Ryan J G, D'antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(4): 1-24.
    [8]
    Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2
    [9]
    Haggerty J A. Petrology and Geochemistry of Neocene Sedimentary Rocks from Mariana Forearc Seamounts: Implications for Emplacement of the Seamounts [M]. Washington DC American Geophysical Union Geophysical Monograph Series, 1987, 175-185.
    [10]
    Savov I P, Ryan J G, D'antonio M, et al. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9).
    [11]
    Haggerty J, Fisher J. Short-Chain Organic Acids in Interstitial Waters from Mariana and Bonin Forearc Serpentines: Leg 125 [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992: 125.
    [12]
    Fryer P, Wheat C G, Mottl M J. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone [J]. Geology, 1999, 27(2): 103-106. doi: 10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2
    [13]
    Mottl M J, Komor S C, Fryer P, et al. Deep-slab fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195 [J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 1-14.
    [14]
    Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.
    [15]
    Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013
    [16]
    佟宏鹏, 姚凯, 陈琳莹, 等. 马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式[J]. 海洋地质与第四纪地质, 2021, 41(06):15-26 doi: 10.16562/j.cnki.0256-1492.2021062501

    TONG Hongpeng, YAO Kai, CHEN Linying, et al. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc [J]. Marine Geology & Quaternary Geology, 2021, 41(06): 15-26. doi: 10.16562/j.cnki.0256-1492.2021062501
    [17]
    Fryer P, Saboda K L, Johnson L E, et al. Conical Seamount: SeaMARC II, Alvin submersible, and seismic reflection studies [M]. //Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.
    [18]
    Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876
    [19]
    Gharib J, J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for subforearc subduction processes [D]. Ph. D. Dissertation. Honolulu: University of Hawaii, 2006.
    [20]
    Mottl M J. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. [C]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.
    [21]
    Fryer P, Mottl M, Johnson L, et al. Serpentine bodies in the forearcs of western pacific convergent margins: origin and associated fluids [J]. Active Margins and marginal basins of the Western Pacific, 1995: 259-279.
    [22]
    Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) [J]. Chemical Geology, 2002, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1
    [23]
    Mccollom T. M. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface [J]. Reviews in Mineralogy & Geochemistry, 2013, 75(1): 467-494.
    [24]
    Mccollom T M, Seewald J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine [J]. Geochimica Et Cosmochimica Acta, 2001, 65(21): 3769-3778. doi: 10.1016/S0016-7037(01)00655-X
    [25]
    Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
    [26]
    丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):268

    DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization [J]. Journal of Engineering Studies, 2016, 8(3): 268.
    [27]
    Bebout G E. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling [J]. Chemical Geology, 1995, 126(2): 191-218. doi: 10.1016/0009-2541(95)00118-5
    [28]
    Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037
    [29]
    冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019

    FENG Junxi, LUO Min, HU Yu, et al. Progress of the Research on Authigenic Carbonates Associated with Oceanic Serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019
    [30]
    Albers E, Shervais J, Hansen C, et al. Shallow depth, substantial change: fluid-metasomatism causes major compositional modifications of subducted volcanics (Mariana forearc) [J]. Frontiers in Earth Science, 2021, 10: 826312.
    [31]
    Alt J C, Shanks W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3): 272-285.
    [32]
    Fleet A J. Hydrothermal and hydrogenous ferro-manganese deposits: Do they form a continuum? The rare earth element evidence [M]. Springer US, 1983, 12: 535–555.
    [33]
    Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057
  • Related Articles

    [1]XIE Yingfeng, REN Jinfeng, DENG Wei, LU Jing'an, KUANG Zenggui, KANG Dongju, QU Changwei. Identification and the differential accumulation of leakage-typed gas hydrate in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 1-11. DOI: 10.16562/j.cnki.0256-1492.2024091102
    [2]YANG Chupeng, LIU Jie, YANG Rui, YAO Yongjian, LI Xuejie, SU Ming. Accumulation model of natural gas hydrate in the Beaufort-Mackenzie Delta Basin, the Arctic[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 146-158. DOI: 10.16562/j.cnki.0256-1492.2020052602
    [3]HUANG Wei, ZHANG Wei, LIANG Jinqiang, SHANG Jiujing, MENG Miaomiao, LIN Lin, XU Mengjie. Characteristics of gas-bearing fluid migration and accumulation system and their control on gas hydrate accumulation in the Jianfengbei Basin of South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 148-161. DOI: 10.16562/j.cnki.0256-1492.2019091802
    [4]SUN Jing, YANG Changqing, XU Liming, WANG Jianqiang. Paleo-environment of the Late Triassic-Early Jurassic in the land area next to the southern East China Sea Shelf[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 81-92. DOI: 10.16562/j.cnki.0256-1492.2019072501
    [5]Zhibin SHA, Zhenqiang XU, Shaoying FU, Jinqiang LIANG, Wei ZHANG, Pibo SU, Hongfeng LU, Jing'an LU. Gas sources and its implications for hydrate accumulation in the eastern Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 116-125. DOI: 10.16562/j.cnki.0256-1492.2019010902
    [6]LIU Jie, YANG Rui, ZHANG Jinghua, WEI Wei, WU Daidai. Gas hydrate accumulation conditions in the Huaguang Depression of Qiongdongnan Basin and prediction of favorable zones[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 134-142. DOI: 10.16562/j.cnki.0256-1492.2018072701
    [7]MA Kui, HU Shuyuan, LIU Gang, LI Mei, WANG Kun, HUANG Qinyu, DAI Kang, WANG Yangju. CHARACTERISTICS AND ORIGINS OF ORDOVICIAN KARST RESERVOIR IN HALAHATANG AREA,NORTHERN TARIM BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 119-128. DOI: 10.16562/j.cnki.0256-1492.2016.04.014
    [8]HU Lin, YANG Xibing, XU Xuefeng, FU Dawei, ZHANG Shuai. MAIN CONTROLLING FACTORS AND ACCUMULATION MODELS OF HYDROCARBON IN WUSHI SAG, BEIBU GULF BASIN, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 121-127. DOI: 10.16562/j.cnki.0256-1492.2016.02.014
    [9]WAN Zhifeng, XIA Bin, LIN Ge, LI Junting, LIU Baoming. HYDROCARBON ACCUMULATION MODEL FOR OVERPRESSURE BASIN: AN EXAMPLE FROM THE YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 91-97. DOI: 10.3724/SP.J.1140.2010.06091
    [10]DONG Dong-dong, WU Shi-guo, SUN Yun-bao, WANG Xiu-juan. ANALYSIS OF FLUID POTENTIAL IN THE QIONGDONGNAN BASIN AND ITS IMPLICATION TO GAS HYDRATE FORMATION[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 93-100.

Catalog

    Article views (1957) PDF downloads (121) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return