ZHANG Shaoliang, ZHANG Jianpei, TANG Xianjun, ZHANG Tian. GEOMETRY CHARACTERISTIC OF THE FAULT SYSTEM IN XIHU SAG IN EAST CHINA SEA AND ITS FORMATION MECHANISM[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 87-94. DOI: 10.3724/SP.J.1140.2014.01087
Citation: ZHANG Shaoliang, ZHANG Jianpei, TANG Xianjun, ZHANG Tian. GEOMETRY CHARACTERISTIC OF THE FAULT SYSTEM IN XIHU SAG IN EAST CHINA SEA AND ITS FORMATION MECHANISM[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 87-94. DOI: 10.3724/SP.J.1140.2014.01087

GEOMETRY CHARACTERISTIC OF THE FAULT SYSTEM IN XIHU SAG IN EAST CHINA SEA AND ITS FORMATION MECHANISM

More Information
  • Received Date: May 09, 2013
  • Revised Date: June 07, 2013
  • The geometry characteristic of the fault system in the Xihu Sag shows a feature of "East-West zoning and South-North blocking". The structural style in the northern and southern parts of the West Slope Zone is of faulted terrace type; but on the Pinghu slope, the central part of the West Slope Zone, mainly is of single fault type. The structural style changes regularly from north to south in the Central Subsag-Inverted Structure Zone, indicating that the fault inversion intensity weakened gradually from north to south. In the Eastern Margin, the northern part is characterized by west dipping faulted terraces, but in the southern part they are east dipping, and the Huangyan fault zone, central part of the Eastern Margin, is a transitional zone. Specific phenomena have been observed in the transitional zone. For examples, E-W faults are well developed in the middle-south sag of the transitional zone, and NE, NNE faults developed on both sides of this transitional zone and pinch-out or displace laterally. In the middle-north sag, the transitional zone is characterized by the change in faults direction. The transitional zone between the north and south are basically follow the regional strike-slip basement faults in NW, NWW direction. The South-North difference of the Structural style in the Xihu Sag may be caused by the reactivation of the NW, NWW faults.
  • [1]
    姚超,焦贵浩,王同和,等.中国含油气构造样式[M].北京:石油工业出版社,2004.[YAO Chao,JIAO Guihao,WANG Tonghe, et al. The Hydrocarbon Bearing Structures Style in China[M].Beijing:Publishing House of Oil Industry,2004.]
    [2]
    朱伟林,王国纯.中国近海前新生代油气勘探新领域探索[J]. 地学前缘,2000,7(3):215-226.

    [ZHU Weilin, WANG Guochun. New venture of exploration of Pre-Cenozoic oil and gas in Chinese offshore areas[J]. Earth Science Frontiers,2000,7(3):215-226.]
    [3]
    刘金水,廖宗廷,贾健谊,等.东海陆架盆地地质结构及构造演化[J].上海地质,2003,3:1-6.[LIU Jinshui, LIAO Zongting, JIA Jianyi, et al. The Geological Structure and Tectonic Evolution of the East China Sea Shelf Basin[J]. Shanghai Geology,2003

    ,3:1-6.]
    [4]
    贾健谊,顾惠荣.东海西湖凹陷含油气系统与资源评价[M]. 北京:地质出版社,2001.[JIA Jianyi,GU Huirong. Oil-Bearing Systems and Petroleum Assessment of the Xihu Sag in the East China Sea[M].Beijing:Geological Publishing House,2001.]
    [5]
    赵金海.东海中、新生代盆地成因机制和演化(上)[J]. 海洋石油,2004,24(4):6-14.

    [ZHAO Jinhai. The Forming Factors and Evolvement of the Mesozoic and Cenozoic Basin in the East China Sea(anterior)[J].Offshore Oil,2004,24(4):6-14.]
    [6]
    赵金海.东海中、新生代盆地成因机制和演化(下)[J]. 海洋石油,2005,25(1):1-10.

    [ZHAO Jinhai. The Forming Factors and Evolvement of the Mesozoic and Cenozoic Basin in the East China Sea(posterior)[J]. Offshore Oil,2005,25(1):1-10.]
    [7]
    张建培. 东海西湖凹陷平湖斜坡带断裂系统特征及成因机制探讨[J].地质科学,2013,48(1):291-303.

    [ZHANG Jianpei. Fault system and its genetic mechanism in the Pinghu slop of the Xihu Sag in the East China Sea Basin[J].Chinese Journal of Geology, 2013,48(1):291-303.]
    [8]
    张敏强,钟志洪,夏斌等.东海西湖凹陷中南部晚中新世构造反转与油气聚集[J].中国海上油气,2005,17(2):73-79.

    [ZHANG Minqiang, ZHONG Zhihong, XIA Bin, et al. Late Miocene tectonic inversion and hydrocarbon migration and accumulation in central and southern Xihu sag, East China Sea[J].China Offshore Oil and Gas,2005,17(2):73-79.]
    [9]
    张建培,张涛,刘景彦,等.西湖凹陷反转构造分布与样式. 海洋石油,2008,28(4):14-20.

    [ZHANG Jianpei, ZHANG Tao, LIU Jingyan, et al. Distribution and style of inversed structures in Xihu Depression[J].Offshore Oil,2008,28(4):14-20.]
    [10]
    杨文达,崔征科,张异彪,等.东海地质与矿产[M]. 北京:海洋出版社,2010.[YANG Wenda, CUI Zhengke, ZHANG Yibiao, et al. Geology and Mineral Resources of the East China Sea[M].Beijing:China Ocean Press,2010.]
    [11]
    李祖武.中国东部北西向构造[M]. 北京:地震出版社,1992.[LI Zuwu. The Westnorthern Structural of Eastern China[M].Beijing:Earthquake Publishing House,1992.]
    [12]
    万天丰.中国大地构造学纲要[M]. 北京:地质出版社,2004.[WAN Tianfeng. The Geotectonic Outline of China[M].Beijing:Geological Publishing House,2001.]
    [13]
    陈安定. 苏北箕状断陷形成的动力学机制[J]. 高校地质学报,2001,7(4):408-417.

    [CHEN Anding. Dynamic Mechanism of Formation of Dustpan Subsidence, Northern Jiangsu[J].Geological Journal of China Universities,2001,7(4):408-417.]
    [14]
    杨琦,陈红宇. 苏北-南黄海盆地构造演化[J]. 石油实验地质,2003,25(增刊):562-565.[YANG Qi, CHEN Hongyu. Tectonic evolution of the North Jiangsu-South Yellow Sea Basin[J].Petroleum Geology & Experiment,2003

    ,25(supplement):562-565.]
  • Related Articles

    [1]LIU Lei, GUAN Hongxiang, FENG Junxi, XU Lanfang, MAO Shengyi, LIU Lihua. Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 144-159. DOI: 10.16562/j.cnki.0256-1492.2020021101
    [2]XU Shendong, CHEN Wenhuang, DENG Wenfeng, JIA Guodong. WINTER SURFACE SEAWATER TEMPERATURE IN THE NORTHERN SOUTH CHINA SEA INDUCED FROM TEMPERATURE INDEX OF SHELL OXYGEN ISOTOPE OF GLOBIGERINOIDES RUBER[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 101-107. DOI: 10.16562/j.cnki.0256-1492.2016.02.012
    [3]QIAN Xing, ZHANG Li, YI Hai, LIN Zhen, WEI Zhenquan, SHUAI Qingwei. TECTONIC SEQUENCE AND ITS SEDIMENTARY FILLING PROCESS OF THE SHUANGFENGNAN SLOPE IN NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 21-27. DOI: 10.3724/SP.J.1140.2015.01021
    [4]GE Qian, MENG Xianwei, CHU Fengyou, XUE Zuo, LEI Jijiang. PALEOCEANOGRAPHIC RECORDS OF CORE ZHS-176 FROM THE NORTHERN SOUTH CHINA SEA: OXYGEN ISOTOPE AND ORGANIC CARBON[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 73-80. DOI: 10.3724/SP.J.1140.2012.05073
    [5]XIANG Rong, FANG Li, CHEN Zhong, ZHANG Lanlan, DU Shuhuan, YAN Wen, CHEN Muhong. CARBON ISOTOPE OF BENTHIC FORAMINIFERA AND ITS IMPLICATIONS FOR COLD SEEPAGE IN THE SOUTHWESTERN AREA OFF DONGSHA ISLANDS, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 17-24. DOI: 10.3724/SP.J.1140.2012.04017
    [6]HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. DOI: 10.3724/SP.J.1140.2012.04009
    [7]YUAN Shengqiang, WU Shiguo, ZHAO Zongju, XU Fangjian. DEEPWATER SEDIMENT TRANSPORTATION MODELS FOR NORTHERN SOUTH CHINA SEA SLOPES[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 39-48. DOI: 10.3724/SP.J.1140.2010.04039
    [8]SHA Zhibin, GUO Yiqun, YANG Muzhuang, LIANG Jinqiang, WANG Lifeng. RELATION BETWEEN SEDIMENTATION AND GAS HYDRATE RESERVOIRS IN THE NORTHERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 89-98. DOI: 10.3724/SP.J.1140.2009.05089
    [9]SUN Xiao-yan, LI Guang-xue, LIU Yong, MA Yan-yan, LI Jun-jie. RESPONSE OF ENVIRONMENTAL SENSITIVE GRAIN SIZE GROUP IN CORE FJ04 FROM MUD AREA IN THE NORTH OF EAST CHINA SEA TO EAST ASIAN WINTER MONSOON EVOLVEMENT[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 11-17. DOI: 10.3724/SP.J.1140.2008.03011
    [10]CHEN Fang, SU Xin, LU Hong-feng, CHEN Chao-yun, ZHOU Yang, CHENG Si-hai, LIU Guang-hu. CARBON STABLE ISOTOPIC COMPOSITION OF BENTHIC FORAMINIFERS FROM THE NORTH OF THE SOUTH CHINA SEA: INDICATOR OF METHANE-RICH ENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 1-7.
  • Cited by

    Periodical cited type(11)

    1. 李明宸,闫粟,公力维,王雪晨,耿润玉,徐润喆,周亮,汪亚平,沈治雄. 2020年特大洪水期间长江水下三角洲沉积物沉积特征. 海洋地质与第四纪地质. 2025(02): 31-42 . 本站查看
    2. 胡梦珺,许澳康,白清竹. 中晚全新世共和盆地粒度端元指示的物源特征及环境意义. 干旱区资源与环境. 2024(02): 123-131 .
    3. 王伟斌 ,姚弘毅 ,吴昊 ,蔚广鑫 . 厦门五缘湾及同安湾口表层沉积物粒度端元解析. 渔业研究. 2023(01): 54-63 .
    4. 卞红炜,刘建宗,李璇. 粒度端元分析在环境演变中的应用——以克里雅河尾闾KYN22剖面为例. 中南农业科技. 2023(11): 132-136 .
    5. 侯晨阳,靳建辉,邱俊杰,卫俊杰,许岱玉. 末次冰消期以来福建福宁湾钻孔的粒度特征及其环境指示意义. 山地学报. 2023(05): 621-633 .
    6. 刘胜璟,高建华,徐笑梅,石勇,舒卓,吴昊,元冰瑜,贾建军. 浙闽沿岸泥质区沉积物粒度组分对长江入海输沙量减少的响应. 海洋学报. 2021(03): 105-115 .
    7. 刘蓉,岳大鹏,赵景波,苏志珠,石浩,王晓宁. 陕西横山L_2以来风沙/黄土沉积序列的粒度端元特征及其环境意义. 干旱区地理. 2021(05): 1328-1338 .
    8. 郑树森,李永化,魏东岚. 大连贺家圈黄土粒度所指示的物源特征. 云南地理环境研究. 2020(01): 41-47 .
    9. 杨卓,臧淑英,曲鸽,孙丽. 博斯腾湖和查干湖沉积物粒度特征对比及环境意义. 环境科学与技术. 2020(09): 198-208 .
    10. 白敏,鲁瑞洁,丁之勇,王琳栋. 青海湖湖东沙地粒度端元分析及其指示意义. 第四纪研究. 2020(05): 1203-1215 .
    11. 黎武标,李志文,王志刚,马泽源,王珍珍,梁丽婵. 粒度端元揭示的芝罘剖面末次间冰期——末次冰期气候环境变化特征. 海洋地质与第四纪地质. 2019(02): 177-187 . 本站查看

    Other cited types(5)

Catalog

    Article views (2233) PDF downloads (18) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return