HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. DOI: 10.3724/SP.J.1140.2012.04009
Citation: HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. DOI: 10.3724/SP.J.1140.2012.04009

LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA

More Information
  • Received Date: July 05, 2012
  • Revised Date: July 16, 2012
  • We present hereby the C37 long chain alkenones record from the Core MD 05-2904 located in the northern South China Sea. The C37 alkenones was applied to assess the haptophytes productivity variations. The content and Mass Accumulation Rates (MARs) of the C37 alkenones indicate that during the last 260 ka, the productivity of the haptophytes has generally followed a glacial/interglacial pattern with high values in glacials, and low values in interglacials. And three high productivity intervals are identified in MIS 2, 4 and MIS 6. There were precession signals in both records. All these display a close link between East Asian winter monsoon and paleo-productivity, and on the orbital scale, marine productivity was controlled by insolation and monsoon variations, mainly through nutrients mechanism. And for the northern SCS, sea level changes and river transportation may also play an important role. These results are consistent with other reports. We also notice that, with consideration of both contents and MARs of biomarker, we can better decipher biomarker record, especially for those areas with big fluctuations in sedimentation rates.
  • [1]
    Eglinton T I, Conte M H, Eglinton G, et al. Proceeding of a workshop on alkenone-based paleoceanographic indicators[J]. Geochemistry, Geophysics, Geosystem, 2001, 2:2000GC000122.
    [2]
    Weaver P P E, Chapman M R, Eglinton G, et al. Combined coccolith, foraminiferal, and biomarker reconstruction of paleoceanographic conditions over the last 120 kyr in the northern North Atlantic (591, 231W)[J]. Paleoceanography, 1999, 14:336-349.
    [3]
    Rostek F, Bard E, Beaufort L, et al. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea[J]. Deep-Sea Research Ⅱ, 1997, 44:1461-1480.
    [4]
    Villanueva J, Grimalt J O, Labeyrie L D, et al. Precessional forcing of productivity in the North Atlantic Ocean[J]. Paleoceanography, 1998, 13:561-571.
    [5]
    Calvo E, Pelejero C, Logan G A, et al. Dustinduced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles[J]. Paleoceanography, 2004, 19, PA2020, doi:10. 1029/2003PA000992.
    [6]
    Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19, PA1016, doi: 10.1029/2002PA000808.
    [7]
    Jasper J P, Hayes J M, Mix A C, et al. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255, 000 years[J]. Paleoceanography, 1994, 9:781-798.
    [8]
    Kohfeld K E, Le Quere C, Harrison S P, et al. Role of marine biology in glacial-interglacial CO2 cycles[J]. Science, 2005, 308:74-78.
    [9]
    Rostek F, Ruhland G, Bassinot F C, et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records[J]. Nature, 1993, 364:319-321.
    [10]
    Englebrecht A C, Sachs J P. Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones[J]. Geochim. Cosmochim. Acta, 2005, 69:4253-4265.
    [11]
    Wang P, Li Q. Biogeochemistry and the Carbon Reservoir. The South China Sea[M]. Springer, 2009:25-73.
    [12]
    Jian Z M, Wang L J, Kienast M. Late Quaternary surface paleoproductivity and variations of the East Asian Monsoon in the South China Sea[J]. Quaternary Sciences, 1999, 1:32-40.
    [13]
    Kuhnt W, Hess S, Jian Z. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea[J]. Marine Geology, 1999, 156:123-157.
    [14]
    Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.
    [15]
    Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea:a record of teleconnections with Northern hemisphere events[J]. Marine Geology, 1999, 156:197-210.
    [16]
    Chen M-T, Shiau L-J, Yu P-S, et al. 500000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197:113-131.
    [17]
    Zhao M, Wang P, Tian J, et al. Biogeochemistry and the Carbon Reservoir. The South China Sea[M]. Springer, 2009:439-483.
    [18]
    Laj C, Wang P X, Balut Y, et al. MD147-Marco Polo IMAGESⅫ Cruise Report. France:Institut Paul-Emile Victor (IPEV), 2005.
    [19]
    葛黄敏, 李前裕, 成鑫荣, 等. 南海北部晚第四纪高分辨率浮游氧同位素地层学及其古气候信息[J]. 地球科学, 2010, 35(4):515-525.

    [GE Huangmin, LI Qianyu, CHENG Xinrong, et al. Late Quaternary high resolution monsoon records in planktonic stable isotopes from Northern South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4):515-525.]
    [20]
    Lisiecki L E, Raymo E M. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18Orecords[J]. Paleoceanography, 2005, 20, PA1003, doi:10. 1029/2004PA001071.
    [21]
    North Greenland Ice Core Project (NGRIP) Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431:147-151.
    [22]
    He Juan, Zhao Meixun, LI Li, et al. Sea surface temperature and terrestrial biomarker records of the last 260 ka of core MD05-2904 from the northern South China Sea[J]. Chinese Science Bulletin, 2008, 53(15):2376-2384.
    [23]
    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.
    [24]
    Chen M, Shiau L, Yu P, et al. 500000~year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Paleogeography Paleoclimatology Paleoecology, 2003, 197:113-131.
    [25]
    黄维, 汪品先. 南海沉积物总量的统计:方法与结果[J]. 地球科学进展, 2006, 21(5):465-473.

    [HUANG Wei, WANG Pinxian. The statistics of sediment mass in the South China Sea:method and result[J]. Advances in Earth Science, 2006, 21(5):465-473.]
    [26]
    Paillard D, Labeyrie L, Yiou P. Macintosh program performs time-series analysis[J]. Eos Transactions American Geophysical Union, 1996, 77(39):379, doi:10. 1029/96EO00259.
    [27]
    Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on Oceanic Primary Production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.
    [28]
    Huang C Y, Wu S, Zhao M, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J]. Marine Micropaleontology, 1997, 32:71-94.
    [29]
    Chen Y-Y, Chen M-T, Fang T-S. Biogenic sedimentation patterns in the Northern South China Sea:An ultrahigh-resolution record MD972148 of the past 150,000 years from the IMAGES Ⅲ-IPHIS Cruise[J]. Terrestrial Atmospheric and Oceanic Sciences, 1999, 10(1):215-224.
    [30]
    Chen J, Zheng L, Wiesner M G, et al. Estimations of primary production and export production in the South China Sea based on sediment trap experiments[J]. Chinese Science Bulletin, 1998, 43(7):583-586.
    [31]
    Higginson M J, Maxwell J R, et al. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea:remote vs. local forcing of millennia-and orbital-scale variability[J]. Marine Geology, 2003, 201:223-250.
    [32]
    Chen Y. L. Spatial and seasonal variations of nitrate based new production and primary production in the South China Sea[J]. Deep-Sea Research Ⅰ, 2005, 52:319-340.
    [33]
    Kienast M, Calvert S E, Pelejero C, et al. A critical review of marine sedimentary 13Corg-pCO2 estimates:New palaeorecords form the South China Sea and a revisit of other low-latitude 13Corg-pCO2 records[J]. Global Biogeochemistry Cycles, 2001, 15:113-127.
    [34]
    Pelejero C, Grimalt J O, Sarnthein M, et al. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140000 years[J]. Marine Geology, 1999, 156:109-201.
    [35]
    Zhao M X, Huang C Y, Wang C C, et al. A millennial-scale UK37 sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr:Monsoon and sea-level influence[J]. Palaeogeography, Palwoclimatology, Palaeoecology, 2006, 236:39-55.
    [36]
    Shiau L J, Yu P S, Wei K Y, et al. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern South China Sea over the past 800000 years (IMAGES D972142)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19, 363-376.
    [37]
    Ruddiman W F. Earth's Climate:Past and Future[M]. Freeman & Co., N Y. 2001, 1-465.
    [38]
    Villanueva J, Grimalt J O, Labeyrie L D, et al. Precessional forcing of productivity in the North Atlantic Ocean[J]. Paleoceanography, 1998, 13(6):561-571.
    [39]
    Ivanova E V, Beaufort L, Vidal L, et al. Precession forcing of productivity in the Eastern Equatorial Pacific during the last glacial cycle[J]. Quaternary Science Reviews, 2012, 40:64-77.
    [40]
    Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochem Cycles, 1991, 5:193-259.
    [41]
    Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea:observations and a numerical study[J]. Deep-Sea Research Part I, 2002, 49:1387-1412.
    [42]
    Chen Y L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea[J]. Deep-Sea Research PartⅠ, 2005, 52:319-340.
    [43]
    Pelejero C. Terrigenous n-alkane input in the South China Sea:high resolution records and surface sediments[J]. Chemical Geology, 2003, 200:89-103.
    [44]
    Lea D W, Martin P A, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotopic records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1-3):283-293.
    [45]
    Rostek F, Bard E, Beaufort L, et al. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Research Ⅱ, 1997, 44:1461-1480.
    [46]
    Rickaby R E M, Bard E, Sonzogni C, et al. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?[J] Earth and Planetary Science Letters, 2007, 253:83-95.
    [47]
    Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:350-360.
    [48]
    Conte M H, Thompson A, Lesley D, et al. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica[J]. Geochimica et Cosmochimica Acta, 1998, 62:51-68.
  • Related Articles

    [1]WANG Pinxian. Marine geology and Quaternary geology: A combination[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 1-2. DOI: 10.16562/j.cnki.0256-1492.2021072601
    [2]HU Bangqi, YI Liang, ZHAO Jingtao, GUO Jianwei, DING Xue, WANG Feifei, CHEN Weiwei. Magnetostratigraphy of core XT06 and Quaternary sedimentary dynamics of the deep-sea deposits in the West Philippian Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 61-74. DOI: 10.16562/j.cnki.0256-1492.2020101301
    [3]YAO Jihua, LIU Xiaoqun, SONG Wenjie, ZHAO Wengang, LV Huizhu, SONG Wen. Quaternary tectono-sedimentary evolution of Chishan Uplift in the Dongting Lake[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 160-168. DOI: 10.16562/j.cnki.0256-1492.2019071801
    [4]CHEN Xiaohui, MENG Xiangjun, LI Rihui. Sequence stratigraphy of the Late Quaternary in Liaodong Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 37-47. DOI: 10.16562/j.cnki.0256-1492.2019042301
    [5]LIU Hanyao, LIN Changsong, ZHANG Zhongtao, ZHANG Bo, JIANG Jing, TIAN Hongxun, LIU Huan. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37. DOI: 10.16562/j.cnki.0256-1492.2017060201
    [6]LUO Ding, XIAO Yuanfu, YE Siyuan, YU Guochun. PALAEOCLIMATIC CHANGES DURING LATE QUATERNARY IN NINGBO PLAIN[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 155-161. DOI: 10.3724/SP.J.1140.2013.05155
    [7]MING Jie, LI Anchun, MENG Qingyong, WAN Shiming, YAN Wenwen. QUATERNARY ASSEMBLAGE CHARACTERISTIC AND PROVENANCE OF CLAY MINERALS IN THE PARECEVELA BASIN OF THE EAST PHILIPPINE SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148. DOI: 10.3724/SP.J.1140.2012.04139
    [8]WANG Dawei, WU Shiguo, DONG Dongdong, YAO Genshun, CAO Quanbin. SEISMIC CHARACTERISTICS OF QUATERNARY MASS TRANSPORT DEPOSITS IN QIONGDONGNAN BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 69-74. DOI: 10.3724/SP.J.1140.2009.03069
    [9]ZHU Li-dong, ZHOU Shang-zhe, LI Feng-quan, YE Wei, CUI Qiang. THE ELEMENTAL TRANSPORT FEATURES OF RED EARTH FROM TX-SECTION AND ITS PALEO-CLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 117-123.
    [10]ZHU Li-dong, YE Wei, ZHOU Shang-zhe, LI Feng-quan, YANG Li-hui, SHEN Ye-qin. GRAIN-SIZE FEATURES OF QUATERNARY RED EARTH IN JINHUA-QUZHOU BASIN[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 111-116.

Catalog

    Article views (1973) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return