CHEN Zhiqiang, ZHOU Huaiyang, YAO Huiqiang, LIU Yang, YANG Qunhui, LI Jie, LI Jiwei, SUN Zhilei. THE INFLUENCE OF MAGMATIC PROCESS AND HYDROTHERMAL ALTERATION ON THE GEOCHEMICAL CHARACTERISTICS OF ABYSSAL PERIDOTITES[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 73-80. DOI: 10.3724/SP.J.1140.2013.05073
Citation: CHEN Zhiqiang, ZHOU Huaiyang, YAO Huiqiang, LIU Yang, YANG Qunhui, LI Jie, LI Jiwei, SUN Zhilei. THE INFLUENCE OF MAGMATIC PROCESS AND HYDROTHERMAL ALTERATION ON THE GEOCHEMICAL CHARACTERISTICS OF ABYSSAL PERIDOTITES[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 73-80. DOI: 10.3724/SP.J.1140.2013.05073

THE INFLUENCE OF MAGMATIC PROCESS AND HYDROTHERMAL ALTERATION ON THE GEOCHEMICAL CHARACTERISTICS OF ABYSSAL PERIDOTITES

More Information
  • Received Date: June 15, 2012
  • Revised Date: September 14, 2012
  • Abyssal peridotites usually occur at the end of the slow-ultraslow spreading ridges and the places near transform faults. Their exposure and the alteration thereby have important consequences to the rheology of oceanic lithosphere, the geochemical budgets of the ocean and the activities of microbial communities. They have undergone geological processes such as partial melting, reactions with the porous melt and penetrative seawater during the ascent from the upper mantle via the detachment faults. The geochemical characteristics of abyssal peridotites, therefore, are of importance in discussing their petrogenesis, serpentinization, generation of the ultramafic hosted hydrothermal system and hydrothermal mineralization. Based on the previous studies, we reviewed the exposure and alteration of abyssal peridotites along mid-ocean ridges systematically. The effects of magmatic processes and hydrothermal alteration on the geochemical characteristics of abyssal peridotites, together with the element mobility during alteration, are also discussed. Finally, we proposed that the REE pattern of abyssal peridotite is controlled by both the magmatic process and alteration. However, the magmatic process should be more significant than alteration on modifying the REE patternss.
  • [1]
    Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle:An ion microprobe study of diopsides in abyssal peridotites[J]. J. Geophys. Res., 1990, 95(B3):2661-2678.
    [2]
    Niu Y. Mantle melting and melt extraction processes beneath ocean ridges:Evidence from abyssal peridotites[J]. Journal of Petrology, 1997, 38(8):1047-1074.
    [3]
    Kelemen P B, Kikawa E, Miller D J, et al. LEG 209 SUMMARY, in Proceedings of the Ocean Drilling Program, Initial Reports[R]. Kelemen P B, Kikawa E, and Miller D J, Editors. 2004, Ocean Drilling Program:College Station, TX.
    [4]
    Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle(DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1-2):53-72.
    [5]
    Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1):54-76.
    [6]
    Dick H J B, Fisher R L, Bryan W B. Mineralogic variability of the uppermost mantle along mid-ocean ridges[J]. Earth and Planetary Science Letters, 1984, 69(1):88-106.
    [7]
    Michael P J, Bonatti E. Peridotite composition from the North Atlantic:regional and tectonic variations and implications for partial melting[J]. Earth and Planetary Science Letters, 1985, 73(1):91-104.
    [8]
    Paulick H, Bach W, Godard M, et al. Geochemistry of abyssal peridotites(Mid-Atlantic Ridge, 1520'N, ODP Leg 209):Implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234(3-4):179-210.
    [9]
    Kelemen P B, Kikawa E, Miller D J. Leg 209 summary:processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°~16°N, in Proc. ODP, Sci. Results[R]. Kelemen P B, Kikawa E, and Miller D J, Editors. Ocean Drilling Program:College Station, TX. 2007:1-33.
    [10]
    Niu Y. Bulk-rock major and trace element compositions of abyssal peridotites:Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges[J]. Journal of Petrology, 2004, 45(12):2423-2458.
    [11]
    Karson J A, Lawrence R M. Tectonic setting of serpentinite exposures on the western median valley wall of the MARK area in the vicinity of Site 920[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 153:5-21.
    [12]
    Elthon D. Chemical trends in abyssal peridotites-refertilization of depleted suboceanic mantle[J]. Journal of Geophysical Research-Solid Earth, 1992, 97(B6):9015-9025.
    [13]
    Dilek Y, Coulton AHurst S D. Serpentinization and hydrothermal veining in peridotites at Site 920 in the MARK area[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 153:35-59.
    [14]
    Honnorez J. Hydrothermal alteration vs. ocean-floor metamorphism. A comparison between two case histories:the TAG hydrothermal mound(Mid-Atlantic Ridge) vs. DSDP/ODP Hole 504B(Equatorial East Pacific)[J]. Comptes Rendus Geosciences, 2003, 335(10-11):781-824.
    [15]
    Allen D E, Seyfried W E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges:An experimental study at 400℃, 500 bars[J]. Geochimica et Cosmochimica Acta, 2003, 67(8), 1531-1542.
    [16]
    Allen D E, Seyfried Jr W E. Serpentinization and heat generation:constraints from Lost City and Rainbow hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(6):1347-1354.
    [17]
    Schmidt K, Koschinsky A, Garbe-Sch nberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge:Temporal and spatial investigation[J]. Chemical Geology, 2007, 242(1-2):1-21.
    [18]
    Niu Y, H kinian R. Basaltic liquids and harzburgitic residues in the Garrett Transform:A case study at fast-spreading ridges[J]. Earth and Planetary Science Letters, 1997, 146(1-2):243-258.
    [19]
    Dick H J B, Lissenberg C J, Warren J M. Mantle melting, melt transport, and delivery beneath a slow-spreading ridge:The paleo-MAR from 23°15'N to 23°45'N[J]. Journal of Petrology, 2010, 51(1-2):425-467.
    [20]
    Cannat M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. J. Geophys. Res., 1993, 98(B3):4163-4172.
    [21]
    Alt J C, Shanks W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge:sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4):641-653.
    [22]
    Smith D K, Cann J R, Escartin J. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge[J]. Nature, 2006, 442(7101):440-443.
    [23]
    Schroeder T, Cheadle M J, Dick H J B, et al. Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge:A structural synthesis of ODP Leg 209[J]. Geochem. Geophys. Geosyst., 2007, 8(6):Q06015.
    [24]
    Escartín J, Smith D K, Cann J, et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere[J]. Nature, 2008, 455(7214):790-794.
    [25]
    Smith D K, Escart n J, Schouten H, et al. Fault rotation and core complex formation:Significant processes in seafloor formation at slow-spreading mid-ocean ridges(Mid-Atlantic Ridge, 13°~15°N)[J]. Geochem. Geophys. Geosyst., 2008, 9(3):Q03003.
    [26]
    M vel C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Geosciences, 2003, 335(10-11):825-852.
    [27]
    Cannat M, Seyler M. Transform tectonics, metamorphic plagioclase and amphibolitization in ultramafic rocks of the Vema transform fault(Atlantic Ocean)[J]. Earth and Planetary Science Letters, 1995, 133(3-4):283-298.
    [28]
    Dick H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[J]. Geological Society, London, Special Publications, 1989, 42(1):71-105.
    [29]
    Johnson K T M, Dick H J B. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis Ⅱ Fracture Zone[J]. J. Geophys. Res., 1992, 97(B6):9219-9241.
    [30]
    Hellebrand E, Snow J E, Hoppe P, et al. Garnet-field melting and late-stage refertilization in residual' abyssal peridotites from the central Indian Ridge[J]. Journal of Petrology, 2002, 43(12):2305-2338.
    [31]
    Seyler M, Cannat M, M vel C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E)[J]. Geochem. Geophys. Geosyst., 2003, 4(2):9101.
    [32]
    Hellebrand E, Snow J E, M he R. Mantle melting beneath Gakkel Ridge (Arctic Ocean):abyssal peridotite spinel compositions[J]. Chemical Geology, 2002, 182(2-4):227-235.
    [33]
    Liu C-Z, Snow J E, Br gmann G, et al. Non-chondritic HSE budget in Earth's upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean)[J]. Earth and Planetary Science Letters, 2009, 283(1-4):122-132.
    [34]
    Gao Y, Snow J E, Casey J F, et al. Cooling-induced fractionation of mantle Li isotopes from the ultraslow-spreading Gakkel Ridge[J]. Earth and Planetary Science Letters, 2011, 301(1-2):231-240.
    [35]
    Snow J E, Dick H J B. Pervasive magnesium loss by marine weathering of peridotite[J]. Geochimica et Cosmochimica Acta, 1995, 59(20):4219-4235.
    [36]
    Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions:First insights from ODP Leg 209, MAR 15°N[J]. Geochem. Geophys. Geosyst., 2004, 5(9):Q09F26.
    [37]
    Turcotte D L, Morgan J P. The physics of magma migration and mantle flow beneath a mid-ocean ridge, in mantle flow and melt generation at mid-ocean ridges[M]//Morgan J P, Blackman D K, Sinton J M, Editors. AGU:Washington, D C. 1992:155-182.
    [38]
    Grove T L, Kinzler R J, Bryan W B, Fractionation of mid-ocean ridge basalt (MORB), in Mantle Flow and Melt Generation at Mid-Ocean Ridges[M]//Morgan J P, Blackman D K, Sinton J M, Editors. AGU:Washington, DC. 1992:281-310.
    [39]
    Langmuir C H, Klein E M, Plank T, Petrological systematics of mid-ocean ridge basalts:Constraints on melt generation beneath ocean ridges, in Mantle Flow and Melt Generation at Mid-Ocean Ridges[M]//Morgan J P, Blackman D K, Sinton J M, Editors. AGU:Washington, D C. 1992:183-280.
    [40]
    Godard M, Lagabrielle Y, Alard O, et al. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274(Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge):Implications for mantle dynamics beneath a slow spreading ridge[J]. Earth and Planetary Science Letters, 2008, 267(3-4):410-425.
    [41]
    Jons N, Bach W, Klein F. Magmatic influence on reaction paths and element transport during serpentinization[J]. Chemical Geology, 2010, 274(3-4):196-211.
    [42]
    Bach W, Paulick H, Garrido C J, et al. Unraveling the sequence of serpentinization reactions:petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)[J]. Geophysical Research Letters, 2006, 33(13).
    [43]
    Bach W, Klein F. The petrology of seafloor rodingites:Insights from geochemical reaction path modeling[J]. Lithos, 2009, 112(1-2):103-117.
    [44]
    H kinian R, Bideau D, Cannat M, et al. Volcanic activity and crust-mantle exposure in the ultrafast Garrett transform fault near 13°28'S in the Pacific[J]. Earth and Planetary Science Letters, 1992, 108(4):259-275.
    [45]
    H kinian R, Bideau D, Francheteau J, et al. Petrology of the East Pacific rise crust and upper mantle exposed in Hess Deep (Eastern Equatorial Pacific)[J]. J. Geophys. Res., 1993, 98(B5):8069-8094.
    [46]
    Agrinier P, H kinian R, Bideau D, et al. O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction[J]. Earth and Planetary Science Letters, 1995, 136(3-4):183-196.
    [47]
    Dick H J B. Partial melting in the Josephine Peridotite; I, The effect on mineral composition and its consequence for geobarometry and geothermometry[J]. Am. J. Sci., 1977, 277(7):801-832.
    [48]
    Nicolas A. A melt extraction model based on structural studies in mantle peridotites[J]. Journal of Petrology, 1986, 27(4):999-1022.
    [49]
    Kelemen P B, Dick H J B. Focused melt flow and localized deformation in the upper mantle:Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon[J]. J. Geophys. Res., 1995, 100(B1):423-438.
    [50]
    Jagoutz E, Palme H, Baddenhausen H, et al. The abundance of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules[C]//In Lunar and Planetary Science Conference, 10th. 1979. Houston, Texas:Lunar and Planetary Institute.
    [51]
    Volkova N, Stupakov S, Babin G, et al. Mobility of trace elements during subduction metamorphism as exemplified by the blueschists of the Kurtushibinsky Range, Western Sayan[J]. Geochemistry International, 2009, 47(4):380-392.
    [52]
    Chen Z-q, Zhou H-y, Liu Y, et al. Influence of igneous processes and serpentinization on geochemistry of the Logatchev Massif harzburgites (14°45'N, Mid-Atlantic Ridge), and comparison with global abyssal peridotites[J]. International Geology Review, 2013,55(1):155-160.
    [53]
    Delacour A, Früh-Green G L, Frank M, et al. Sr-and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR):Implications for fluid fluxes and lithospheric heterogeneity[J]. Chemical Geology, 2008, 254(1-2):19-35.
    [54]
    Bickle M J, Teagle D A H. Strontium alteration in the Troodos ophiolite:implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems[J]. Earth and Planetary Science Letters, 1992, 113(1-2):219-237.
    [55]
    Kempton P D, Hunter A G. A Sr-, Nd-, Pb-, O-isotope study of plutonic rocks from MARK, Leg 153:Implications for mantle heterogeneity and magma chamber processes[R]. Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 153:305-319.
    [56]
    Michard A, Albarede F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°[deg]N)[J]. Nature, 1983, 303(5920):795-797.
    [57]
    Michard A, Albar de F. The REE content of some hydrothermal fluids[J]. Chemical Geology, 1986, 55(1-2):51-60.
    [58]
    Boschi C, Dini A, Fr h-Green G L, et al. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 N):Insights from B and Sr isotope data[J]. Geochimica et Cosmochimica Acta, 2008, 72(7):1801-1823.
    [59]
    Vils F, Pelletier L, Kalt A, et al. The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209(Sites 1272A and 1274A):Implications for lithium and boron budgets of oceanic lithosphere[J]. Geochimica et Cosmochimica Acta, 2008, 72(22):5475-5504.
    [60]
    Elliott T, Jeffcoate A, Bouman C. The terrestrial Li isotope cycle:light-weight constraints on mantle convection[J]. Earth and Planetary Science Letters, 2004, 220(3-4):231-245.
    [61]
    Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212(1-2):59-79.
    [62]
    Vils F, Tonarini S, Kalt A, et al. Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209[J]. Earth and Planetary Science Letters, 2009, 286(3-4):414-425.
  • Related Articles

    [1]WU Piao, CHEN Jianwen, ZHANG Yinguo, GONG Jianming, LAN Tianyu, XUE Lu, KE Xing. Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 138-158. DOI: 10.16562/j.cnki.0256-1492.2022061501
    [2]LEI Zhiyu, LIU Rongbo, HU Rijun, QIU Jiandong, ZHU Longhai, ZHU Feng, ZHANG Xiaodong. Controlling factors and distribution of geochemical characteristics of the surface sediments in the Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 104-118. DOI: 10.16562/j.cnki.0256-1492.2022041301
    [3]LIU Rongbo, YUAN Xiaodong, LIN Zheyuan, QIU Jiandong, HU Rijun, GAO Junfeng, LIU Longlong, ZHANG Shengjiang. Geochemical characteristics and their geological implication in sediments from Laizhou Bay since late Quaternary[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 100-110. DOI: 10.16562/j.cnki.0256-1492.2022012301
    [4]LIU Gang, HE Qijiang, LI Liang, WU Shiguo, HAN Xiaohui, WANG Xuemu, CAI Guanqiang, WANG Dawei. Sedimentation rate and geochemical characters of the lagoonal deposits in the Yongle Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 69-77. DOI: 10.16562/j.cnki.0256-1492.2018.06.007
    [5]ZHAO Xia, HUANG Peng, HU Ningjing, KONG Juanjuan, LIAO Renqiang, WANG Xiong. CHARACTERISTICS AND INFLUENCE FACTORS OF ELEMENT MIGRATION OF HYDROTHERMAL ALTERED ROCK IN EASTERN MANUS BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 86-101. DOI: 10.16562/j.cnki.0256-1492.2017.03.009
    [6]YANG Baoju, ZENG Zhigang, YIN Xuebo, WANG Xiaoyuan, CHEN Shuai, HUANG Xin, RONG Kunbo, MA Yao. THE ORIGIN AND GEOCHEMICAL CHARACTERISTICS OF FE-SI-MN OXYHYDROXIDES AT PACMANUS HYDROTHERMAL FIELD[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 69-80. DOI: 10.16562/j.cnki.0256-1492.2016.03.007
    [7]GONG Xiaofeng, HE Jiaxiong, WU Congkang, YANG Jun, LI Kui, ZHANG Yang, LI Duohua, ZHU Jiancheng. BASIC GEOLOGICAL AND GEOCHEMICAL BACKGROUND OF UNCONVENTIONAL GAS RESOURCES IN CHINA[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 95-105. DOI: 10.3724/SP.J.1140.2014.05095
    [8]WU Daidai, WU Nengyou, FU Shaoying, LIANG Jinqiang, GUAN Hongxiang. GEOCHEMICAL CHARACTERISTICS OF SHALLOW SEDIMENTS IN THE GAS HYDRATE DISTRIBUTION AREA OF DONGSHA, THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51. DOI: 10.3724/SP.J.1140.2010.05041
    [9]ZHANG Yi, SHI Xuefa, WANG Kunshan. GEOCHEMICAL CHARACTERISTICS OF THE SURFACE SEDIMENTS IN THE MUD AREA OF THE YANGTZE ESTUARY[J]. Marine Geology & Quaternary Geology, 2010, 30(3): 61-70. DOI: 10.3724/SP.J.1140.2010.03061
    [10]ZHANG Zhen-guo, FANG Nian-qiao, DU Yuan-sheng, YANG Sheng-xiong, LIU Jian, SONG Cheng-bing. COMPARISON BETWEEN NORTHWESTERN CONTINENTAL MARGIN OF THE SOUTH CHINA SEA AND OTHER OCEANS OF GEOCHEMICAL CHARACTERISTICS OF POLYMETALLIC NODULES[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 51-56. DOI: 10.3724/SP.J.1140.2008.03051

Catalog

    Article views (1672) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return