YANG Baoju, ZENG Zhigang, YIN Xuebo, WANG Xiaoyuan, CHEN Shuai, HUANG Xin, RONG Kunbo, MA Yao. THE ORIGIN AND GEOCHEMICAL CHARACTERISTICS OF FE-SI-MN OXYHYDROXIDES AT PACMANUS HYDROTHERMAL FIELD[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 69-80. DOI: 10.16562/j.cnki.0256-1492.2016.03.007
Citation: YANG Baoju, ZENG Zhigang, YIN Xuebo, WANG Xiaoyuan, CHEN Shuai, HUANG Xin, RONG Kunbo, MA Yao. THE ORIGIN AND GEOCHEMICAL CHARACTERISTICS OF FE-SI-MN OXYHYDROXIDES AT PACMANUS HYDROTHERMAL FIELD[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 69-80. DOI: 10.16562/j.cnki.0256-1492.2016.03.007

THE ORIGIN AND GEOCHEMICAL CHARACTERISTICS OF FE-SI-MN OXYHYDROXIDES AT PACMANUS HYDROTHERMAL FIELD

More Information
  • Received Date: February 14, 2015
  • Revised Date: December 19, 2015
  • Four Fe-Si-Mn oxyhydroxides dredged from the area between hydrothermal sites of Roger's Ruins and Roman Ruins at the PACMANUS hydrothermal field in the Eastern Manus Basin were analyzed for major, trace and rare earth elements. The low trace metal and REE contents, low Co/Zn ratio and high growth rate indicate a hydrothermal origin. Most of the samples show obvious positive Ce anomalies, of which the ranges (lg 3Ce/(2La + Nd),0.008~0.229) are lower than the range of typical hydrogenic oxyhydroxides (lg 3Ce/(2La + Nd),0.352~0.637). Therefore, the contribution of seawater is very little. The samples with positive Ce anomalies are mainly composed of Fe-oxyhydroxides. It means that the positive Ce anomalies were mainly controlled by the adsorption by Fe-oxyhydroxides and the diagenesis in the later period. The content of TiO2, and Al/(Al +Fe + Mn) ratio were lower than the ratio of volcanic materials, which implies that the contribution of volcanic materials is little. The high Ba contents may be derived from the todorokite and barite scattering in the samples. The high Pb contents reflect that Pb was not incorporated into the sulfides formed in the early period. On the contrary, Pb was incorporated into Fe-Si-Mn oxyhydroxides along with the hydrothermal fluid.
  • [1]
    Benjamin S B, Haymon R M. Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise:Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(5):1-26.
    [2]
    Dekov V M, Petersen S, Garbe-Schonberg C D, et al. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust:The Lilliput hydrothermal field (9°33'S, Mid-Atlantic Ridge)[J]. Chemical Geology, 2010, 278(3-4):186-200.
    [3]
    Sun Z, Zhou H, Glasby G P, et al. Formation of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin[J]. Journal of Asian Earth Sciences, 2012, 43(1):64-76.
    [4]
    Zeng Z, Ouyang H, Yin X, et al. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin:mineralogical and geochemical evidence[J]. Journal of Asian Earth Sciences, 2012, 60:130-146.
    [5]
    Hein J R, Schulz M S, Dunham R E, et al. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific[J]. Journal of Geophysical Research, 2008, 113:B08S14.
    [6]
    Iizasa K, Kawasaki K, Maeda K, et al. Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacific[J]. Marine Geology, 1998, 145(1-2):1-21.
    [7]
    Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific[J]. Marine Geology, 1988, 81(1-4):227-239.
    [8]
    Karl D M, Brittain A M, Tilbrook B D. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(11):1655-1673.
    [9]
    Bogdanov Y A, Lisitzin A P, Binns R A, et al. Low-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea[J]. Marine Geology, 1997, 142(1-4):99-117.
    [10]
    Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and Environmental Microbiology, 2002, 68(6):3085-3093.
    [11]
    Binns R A, Scott S D, Bogdanov Y A, et al. Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea[J]. Economic Geology, 1993, 88(8):2122-2153.
    [12]
    Edwards K J, Glazer B, Rouxel O J, et al. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii[J]. The ISME Journal, 2011, 5:1748-1758.
    [13]
    Binns R A, Scott S D. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea[J]. Economic Geology, 1993, 88(8):2226-2236.
    [14]
    Little C T S, Glynn S E J, Mills R A. Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents[J]. Geomicrobiology Journal, 2004, 21(6):415-429.
    [15]
    Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from South-Pacific intraplate volcanos and east Pacific rise axial and off-axial regions[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1993, 88(8):2099-2121.
    [16]
    Boyd T, Scott S D. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea[J]. The Canadian Mineralogist, 1999, 37(4):973-990.
    [17]
    Dekov V M, Kamenov G D, Savelli C, et al. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea):hydrothermal deposition and re-deposition in a zone of oxygen depletion[J]. Chemical Geology, 2009, 264(1-4):347-363.
    [18]
    Hrischeva E, Scott S D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 2007, 71(14):3476-3497.
    [19]
    Tregoning P. Plate kinematics in the western Pacific derived from geodetic observations[J]. Journal of Geophysical Research-Solid Earth, 2002, 107(B1):ECV 7-1-ECV 7-8.
    [20]
    Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99:19707-19718.
    [21]
    Taylor B. Bismarck Sea:evolution of a back-arc basin[J]. Geology, 1979, 7(4):171-174.
    [22]
    Reeves E P, Seewald J S, Saccocia P, et al. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 2011, 75(4):1088-1123.
    [23]
    Craddock P R, Bach W, Seewald J S, et al. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea:indicators of sub-seafloor hydrothermal processes in back-arc basins[J]. Geochimica et Cosmochimica Acta, 2010, 74(19):5494-5513.
    [24]
    Binns R A, Barriga F J A S, Miller D J. Leg 193 synthesis:anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea[J]. Proceedings of the Ocean Drilling Program Scientific Results, 2007193:1-71.
    [25]
    Sinton J M, Ford L L, Chappell B, et al. Magma genesis and mantle heterogeneity in the Manus Back-Arc Basin, Papua New Guinea[J]. Journal of Petrology, 2003, 44(1):159-195.
    [26]
    Kamenetsky V S, Binns R A, Gemmell J B, et al. Parental basaltic melts and fluids in eastern Manus Back-Arc Basin:implications for hydrothermal mineralisation[J]. Earth and Planetary Science Letters, 2001, 184(3-4):685-702.
    [27]
    曾志刚, 陈帅, 王晓媛, 等. 东马努斯海盆PACMANUS热液区Si-Fe-Mn羟基氧化物的矿物学和微形貌特征[J]. 中国科学:地球科学, 2013(1):61-71.[ZENG Zhigang, CHEN Shuai, WANG Xiaoyuan, et al. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUShydrothermal field, Eastern Manus Basin[J]. Science China Earth Sciences, 2013

    (1):61-71.]
    [28]
    Hein J R, Koschinsky A, Halbach P, et al. Iron and manganese oxide mineralization in the Pacific[J]. Manganese Mineralization:Geochemistry and Mineralogy of Terrestrial and Marine Deposits, 1997, 119:123-138.
    [29]
    Canet C, Prol-Ledesma R M, Bandy W L, et al. Mineralogical and geochemical constraints on the origin of ferromanganese crusts from the Rivera Plate (western margin of Mexico)[J]. Marine Geology, 2008, 251(1):47-59.
    [30]
    曾志刚, 王晓媛, 张国良, 等. 东太平洋海隆13°N附近Fe-氧羟化物的形成:矿物和地球化学证据[J]. 中国科学:地球科学, 2007(10):1349-1357.[ZENG Zhigang, WANG Xiaoyuan, ZHANG Guoliang, et al. The formation of Fe-oxyhydroxide near 13

    °N on the East Pacific Rise:mineralogical and geochemical evidence[J]. Science China Earth Sciences, 2007(10):1349-1357.]
    [31]
    Sun Z, Zhou H, Yang Q, et al. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin[J]. Applied Geochemistry, 2011, 26(7):1192-1204.
    [32]
    Glasby G, Stüben D, Jeschke G, et al. A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot[J]. Geochimica et Cosmochimica Acta, 1997, 61(21):4583-4597.
    [33]
    Hein J R, Hsueh-Wen Y, Gunn S H, et al. Composition and origin of hydrothermal ironstones from central Pacific seamounts[J]. Geochimica et Cosmochimica Acta, 1994, 58(1):179-189.
    [34]
    Manheim F, Lane-Bostwick C. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor[J]. Nature, 1988, 335(6185):59-62.
    [35]
    Piper D Z. Rare earth elements in the sedimentary cycle:a summary[J]. Chemical Geology, 1992, 14:285-304.
    [36]
    TOTH J R. Deposition of submarine crusts rich in manganese and iron[J]. Geological Society of America Bulletin, 1980, 91(1):44-54.
    [37]
    Elderfield H, Greaves M. Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules[J]. Earth and Planetary Science Letters, 1981, 55(1):163-170.
    [38]
    Nath B N, Plüger W, Roelandts I. Geochemical constraints on the hydrothermal origin of ferromanganese encrustations from the Rodriguez Triple Junction, Indian Ocean[J]. Geological Society, London, Special Publications, 1997, 119(1):199-211.
    [39]
    Nath B N, Balaram V, Sudhakar M, et al. Rare earth element geochemistry of ferromanganese deposits of the Indian Ocean[J]. Marine Chemistry, 1992, 38:185-208.
    [40]
    German C, Higgs N, Thomson J, et al. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26° 08'N, Mid-Atlantic Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1993, 98(B6):9683-9692.
    [41]
    Boström K. Origin and fate of ferromanganoan active ridge sediments[C]//Pelagic Sediments:On Land and under the Sea. USA:Wiley Online Library, 1973:401.
    [42]
    Usui A, Someya M. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific[J]. Geological Society, London, Special Publications, 1997, 119(1):177-198.
    [43]
    Bonatti E, Beyth M, Rydell H S, et al. Iron-Manganese-Barium deposit from Northern Afar Rift (Ethiopia)[J]. Economic Geology, 1972, 67(6):717-730.
    [44]
    Kerrich R, Said N. Extreme positive Ce-anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province:oxygenated marine bottom waters[J]. Chemical Geology, 2011, 280(1):232-241.
    [45]
    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10):1709-1725.
    [46]
    White D E, Brannock W W, Murata K J. Silica in hot-spring waters[J]. Geochimica et Cosmochimica Acta, 1956, 10(1-2):27-59.
    [47]
    Rimstidt J D, Cole D R. Geothermal mineralization; I, The mechanism of formation of the Beowawe, Nevada, siliceous sinter deposit[J]. American Journal of Science, 1983, 283(8):861-875.
    [48]
    Juniper S K, Fouquet Y. Filamentous iron silica deposits from modern and ancient hydrothermal sites[J]. Canadian Mineralogist, 1988, 26:859-869.
  • Cited by

    Periodical cited type(2)

    1. 曾志刚,陈祖兴,张玉祥,杨娅敏,李晓辉,齐海燕. 海底热液活动的环境与产物. 海洋科学. 2020(07): 143-155 .
    2. 赵霞,黄朋,胡宁静,孔娟娟,廖仁强,王雄. 东马努斯盆地热液蚀变火山岩元素迁移特征及影响因素. 海洋地质与第四纪地质. 2017(03): 86-101 . 本站查看

    Other cited types(4)

Catalog

    Article views (1815) PDF downloads (12) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return