LI Chengfeng,YE Wangquan,CHEN Liang,et al. Super-resolution CT image recognition of micro-occurrence characteristics of natural gas hydrates from Shenhu area in northern South China Sea[J]. Marine Geology & Quaternary Geology,2024,44(3):149-159. DOI: 10.16562/j.cnki.0256-1492.2023092801
Citation: LI Chengfeng,YE Wangquan,CHEN Liang,et al. Super-resolution CT image recognition of micro-occurrence characteristics of natural gas hydrates from Shenhu area in northern South China Sea[J]. Marine Geology & Quaternary Geology,2024,44(3):149-159. DOI: 10.16562/j.cnki.0256-1492.2023092801

Super-resolution CT image recognition of micro-occurrence characteristics of natural gas hydrates from Shenhu area in northern South China Sea

More Information
  • Received Date: September 27, 2023
  • Revised Date: November 09, 2023
  • Available Online: June 20, 2024
  • The Shenhu area in the South China Sea is one of the main areas rich in natural gas hydrate resources. Two on-site experimental explorations in 2017 and 2022 have confirmed the utilization prospects of hydrate resources. At present, precise evaluation on hydrate-containing reservoirs in the region yet needs further improvement as the microscopic occurrence of hydrates in sediment pore spaces is a key factor. This study addresses the issue of insufficient resolution in CT image representation of micro-occurrence forms of hydrates. A super-resolution reconstruction algorithm based on self-supervised deep-learning was established, in which a 2-fold and 4-fold increase in spatial resolution of CT scanning images were achieved. On this basis, the evolution of pore structure and microscopic occurrence characteristics of hydrates in the Shenhu area of the South China Sea were characterized. Due to the presence of a large number of foraminiferal shells in the sediments of the South China Sea, hydrates occupy mainly the internal space of the foraminiferal shells and block the connecting throats among pores, which significantly reduced the gas and water permeability of sediments. However, hydrates do not fully occupy the entire pore space, and there will still be a small amount of gas and water residue. Gas distributed mainly inside the hydrate particles, while water distributed mainly on the surface of hydrate particles. The above experimental results offered a guidance to the interpretation of on-site exploration data such as earthquakes and logging.

  • [1]
    Wang H B, Yang S X, Wu N Y, et al. Controlling factors for gas hydrate occurrence in Shenhu area on the northern slope of the South China Sea[J]. Science China Earth Sciences, 2013, 56(4):513-520. doi: 10.1007/s11430-013-4596-3
    [2]
    Wang X J, Hutchinson D R, Wu S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B5):B05102.
    [3]
    李淑霞, 郭尚平, 陈月明, 等. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议[J]. 力学学报, 2020, 52(3):828-842

    LI Shuxia, GUO Shangping, CHEN Yueming, et al. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3):828-842.]
    [4]
    Konno Y, Oyama H, Nagao J, et al. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan[J]. Energy & Fuels, 2010, 24(12):6353-6358.
    [5]
    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3):557-568.]
    [6]
    杨胜雄, 梁金强, 刘昌岭, 等. 海域天然气水合物资源勘查工程进展[J]. 中国地质调查, 2017, 4(2):1-8

    YANG Shengxiong, LIANG Jinqiang, LIU Changling, et al. Progresses of gas hydrate resources exploration in sea area[J]. Geological Survey of China, 2017, 4(2):1-8.]
    [7]
    杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14

    YANG Shengxiong, LIANG Jinqiang, LU Jing’an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4):1-14.]
    [8]
    刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4):41-50

    LIU Changling, MENG Qingguo, LI Chengfeng, et al. Characterization of natural gas hydrate and its deposits recovered from the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4):41-50.]
    [9]
    胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014, 57(5):1675-1682

    HU Gaowei, LI Chengfeng, YE Yuguang, et al. Observation of gas hydrate distribution in sediment pore space[J]. Chinese Journal of Geophysics, 2014, 57(5):1675-1682.]
    [10]
    Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu Area of the South China Sea[J]. Interpretation, 2017, 5(3):SM13-SM23. doi: 10.1190/INT-2016-0211.1
    [11]
    Jin S, Takeya S, Hayashi J, et al. Structure analyses of artificial methane hydrate sediments by microfocus X-ray computed tomography[J]. Japanese Journal of Applied Physics, 2004, 43(8R):5673-5675. doi: 10.1143/JJAP.43.5673
    [12]
    李承峰, 胡高伟, 业渝光, 等. X射线计算机断层扫描测定沉积物中水合物微观分布[J]. 光电子·激光, 2013, 24(3):551-557

    LI Chengfeng, HU Gaowei, YE Yuguang, et al. Microscopic distribution of gas hydrate in sediment determined by X-ray computerized tomography[J]. Journal of Optoelectronics·Laser, 2013, 24(3):551-557.]
    [13]
    Yang L, Zhao J F, Liu W G, et al. Microstructure observations of natural gas hydrate occurrence in porous media using microfocus X-ray computed tomography[J]. Energy & Fuels, 2015, 29(8):4835-4841.
    [14]
    Zhang L X, Zhao J F, Dong H S, et al. Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation[J]. Chemical Engineering Science, 2016, 144:135-143. doi: 10.1016/j.ces.2016.01.027
    [15]
    Lei L, Seol Y, Jarvis K. Pore-scale visualization of methane hydrate-bearing sediments with Micro-CT[J]. Geophysical Research Letters, 2018, 45(11):5417-5426. doi: 10.1029/2018GL078507
    [16]
    Lei L, Seol Y. High-saturation gas hydrate reservoirs-A pore scale investigation of their Formation from free gas and dissociation in sediments[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(12):12430-12444. doi: 10.1029/2019JB018243
    [17]
    王代刚, 魏伟, 孙静静, 等. 水合物降压分解过程中沉积物孔隙结构动态演化规律[J]. 科学通报, 2020, 65(21):2292-2302 doi: 10.1360/TB-2020-0010

    WANG Daigang, WEI Wei, SUN Jingjing, et al. Dynamic evolution of pore structures of hydrate-bearing sediments induced by step-wise depressurization[J]. Chinese Science Bulletin, 2020, 65(21):2292-2302.] doi: 10.1360/TB-2020-0010
    [18]
    张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3):388-397 doi: 10.1360/N972014-01395

    ZHANG Hui, LU Hailong, LIANG Jinqiang, et al. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea[J]. Chinese Science Bulletin, 2016, 61(3):388-397.] doi: 10.1360/N972014-01395
    [19]
    Li C F, Liu C L, Hu G W, et al. Investigation on the multiparameter of hydrate-bearing sands using Nano-focus X-ray computed tomography[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3):2286-2296. doi: 10.1029/2018JB015849
    [20]
    张巍, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物边界的CT图像识别技术[J]. CT理论与应用研究, 2016, 25(1):13-22

    ZHANG Wei, LI Chengfeng, LIU Changling, et al. Identification technology of the CT images for distinguishing the boundary condition of methane hydrate in porous media[J]. CT Theory and Applications, 2016, 25(1):13-22.
    [21]
    陈亮, 叶旺全, 李承峰, 等. 基于时间演化的天然气水合物CT图像阈值分割[J]. CT 理论与应用研究, 2023, 32(2):171-178

    CHEN Liang, YE Wangquan, LI Chengfeng, et al. Natural gas hydrate CT image threshold segmentation based on time evolution[J]. CT Theory and Applications, 2023, 32(2):171-178.]
    [22]
    Meng Q G, Liu C L, Lu Z Q, et al. Growth behavior and resource potential evaluation of gas hydrate in core fractures in Qilian Mountain permafrost area, Qinghai-Tibet Plateau[J]. China Geology, 2023, 6(2):208-215.
    [23]
    Li C F, Hu G W, Zhang W, et al. Influence of foraminifera on Formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from Shenhu area, South China Sea[J]. Science China Earth Sciences, 2016, 59(11):2223-2230. doi: 10.1007/s11430-016-5005-3
    [24]
    陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学—中国地质大学学报, 2013, 38(5):907-915 doi: 10.3799/dqkx.2013.089

    CHEN Fang, SU Xin, LU Hongfeng, et al. Relations between biogenic component (Foraminifera) and highly saturated gas hydrates distribution from Shenhu Area, Northern South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5):907-915.] doi: 10.3799/dqkx.2013.089
    [25]
    Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 1874-1883.
    [26]
    Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 1646-1654.
    [27]
    Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 2790-2798.
    [28]
    Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 105-114.
    [29]
    Kim J, Kim S, Park C, et al. Construction of prior models for ES-MDA by a deep neural network with a stacked autoencoder for predicting reservoir production[J]. Journal of Petroleum Science and Engineering, 2020, 187:106800. doi: 10.1016/j.petrol.2019.106800
    [30]
    Buono G, Caliro S, Macedonio G, et al. Exploring microstructure and petrophysical properties of microporous volcanic rocks through 3D multiscale and super-resolution imaging[J]. Scientific Reports, 2023, 13(1):6651. doi: 10.1038/s41598-023-33687-x
    [31]
    Karimpouli S, Kadyrov R. Multistep Super Resolution Double-U-net (SRDUN) for enhancing the resolution of Berea sandstone images[J]. Journal of Petroleum Science and Engineering, 2022, 216:110833. doi: 10.1016/j.petrol.2022.110833
    [32]
    Zhang T, Liu Q Y, Du Y. Super-resolution reconstruction of porous media using concurrent generative adversarial networks and residual blocks[J]. Transport in Porous Media, 2023, 149(1):299-343. doi: 10.1007/s11242-022-01892-3
    [33]
    Zuo J W, Wang Z, Zhang Y, et al. Research on image super-resolution algorithm based on mixed deep convolutional networks[J]. Computers and Electrical Engineering, 2021, 95:107422. doi: 10.1016/j.compeleceng.2021.107422
    [34]
    何治亮, 赵向原, 张文彪, 等. 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1):16-33

    HE Zhiliang, ZHAO Xiangyuan, ZHANG Wenbiao, et al. Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2023, 44(1):16-33.]
    [35]
    要惠芳, 赵明坤, 陈强. 基于机器学习的煤系致密砂岩气储层分类研究: 以鄂尔多斯盆地DJ区块为例[J]. 煤炭科学技术, 2022, 50(6):260-270

    YAO Huifang, ZHAO Mingkun, CHEN Qiang. Research on classification of tight sandstone gas reservoir in coal measures based on machine learning: a case from DJ Block of Ordos Basin[J]. Coal Science and Technology, 2022, 50(6):260-270.]
    [36]
    余晓露, 叶恺, 杜崇娇, 等. 基于卷积神经网络的碳酸盐岩生物化石显微图像识别[J]. 石油实验地质, 2021, 43(5):880-885,895

    YU Xiaolu, YE Kai, DU Chongjiao, et al. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. Petroleum Geology & Experiment, 2021, 43(5):880-885,895.]
    [37]
    梁劲, 王明君, 王宏斌, 等. 南海神狐海域天然气水合物声波测井速度与饱和度关系分析[J]. 现代地质, 2009, 23(2):217-223

    LIANG Jin, WANG Mingjun, WANG Hongbin, et al. Relationship between the sonic logging velocity and saturation of gas hydrate in Shenhu area, northern slope of South China Sea[J]. Geoscience, 2009, 23(2):217-223.]
    [38]
    McDonnell S L, Max M D, Cherkis N Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17(8):929-936. doi: 10.1016/S0264-8172(00)00023-4
    [39]
    苏明, 杨睿, 吴能友, 等. 南海北部陆坡区神狐海域构造特征及对水合物的控制[J]. 地质学报, 2014, 88(3):318-326

    SU Ming, YANG Rui, WU Nengyou, et al. Structural characteristics in the Shenhu area, northern continental slope of South China Sea, and their influences on gas hydrate[J]. Acta Geologica Sinica, 2014, 88(3):318-326.]
    [40]
    Yang S X, Zhang M, Liang J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2):1-5.
    [41]
    Priest J A, Rees E V L, Clayton C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of Geophysical Research:Solid Earth, 2009, 141(B11):B11205.
    [42]
    王秀娟, 钱进, LEE M. 天然气水合物和游离气饱和度评价方法及其在南海北部的应用[J]. 海洋地质与第四纪地质, 2017, 37(5):35-47

    WANG Xiujuan, QIAN Jin, LEE M. Methods for estimation of gas hydrate and free gas saturations and application to the northern slope of South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(5):35-47.]

Catalog

    Article views (92) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return