HOU Yuanli, SHAO Lei, QIAO Peijun, CAI Guofu, PANG Xiong, ZHANG Daojun. Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 19-28. DOI: 10.16562/j.cnki.0256-1492.2019012501
Citation: HOU Yuanli, SHAO Lei, QIAO Peijun, CAI Guofu, PANG Xiong, ZHANG Daojun. Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 19-28. DOI: 10.16562/j.cnki.0256-1492.2019012501

Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin

More Information
  • Received Date: January 24, 2019
  • Revised Date: July 14, 2019
  • Available Online: January 17, 2020
  • Using both geological and geophysical methods, this paper aims to study the evolutionary and depositional features of the Baiyun Sag, Pearl River Mouth Basin, the Northern South China Sea. The results show that during the period of Early-Middle Eocene, the Baiyun Sag was prevailed by a transition from alluvial fan to deep lake facies, with marine transgression sometimes in late Eocene. The sediments are mainly sourced from the Panyu Lower Uplift and the Shenhu Plateau. In Early Oligocene, the study area turned gradually to transitional and marine environment. Provenances in the north part of the sag were controlled by the Panyu Lower Uplift, while the sag was mainly filled with sediments from the western SCS through “Kontum- Ying-Qiong” Rivers. The Pearl River started exerting influence on the north part of the sag in Late Oligocene as it passed over the Panyu Lower Uplift, and the rest parts of the sag were controlled by double sources from both the “Kontum-Ying-Qiong” River and the Pearl River. Since Miocene, the water depth constantly increased due to the southward jumping of slope break and increase in basin subsidance, which resulted in the fully domination of ancient Pearl River sediment and the complete transformation of the southern part into deep water environment. The southern part of the sag since then has been influenced by the mixed sedimentation of turbidity current with terrigenous and oceanic sediments.
  • [1]
    陈长民, 施和生, 许仕策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003.

    CHEN Changmin, SHI Hesheng, XU Shice, et al. The Condition of Hydrocarbon Accumulation of Tertiary Petroleum System in Pearl River Mouth Basin[M]. Beijing: Science Press, 2003.
    [2]
    朱伟林. 南海北部大陆边缘盆地天然气地质[M]. 北京: 石油工业出版社, 2007.

    ZHU Weilin. Natural Gas Geology in the North Continental Margin Basin of South China Sea[M]. Beijing: Petroleum Industry Press, 2007.
    [3]
    张功成. 南海北部陆坡深水区构造演化及其特征[J]. 石油学报, 2010, 31(4):528-533. [ZHANG Gongcheng. Tectonic evolution of deepwater area of northern continental margin in South China Sea [J]. Acta Petrolei Sinica, 2010, 31(4): 528-533. doi: 10.7623/syxb201004002
    [4]
    庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2):145-151. [PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications [J]. Geological Review, 2007, 53(2): 145-151. doi: 10.3321/j.issn:0371-5736.2007.02.001
    [5]
    庞雄, 陈长民, 彭大钧, 等. 南海北部白云深水区之基础地质[J]. 中国海上油气, 2008, 20(4):215-222. [PANG Xiong, CHEN Changmin, PENG Dajun, et al. Basic geology of Baiyun deep-water area in the northern South China Sea [J]. China Offshore Oil and Gas, 2008, 20(4): 215-222. doi: 10.3969/j.issn.1673-1506.2008.04.001
    [6]
    邵磊, 庞雄, 陈长民, 等. 南海北部渐新世末沉积环境及物源突变事件[J]. 中国地质, 2007, 34(6):1022-1031. [SHAO Lei, PANG Xiong, CHEN Changmin, et al. Terminal Oligocene sedimentary environments and abrupt provenance change event in the northern South China Sea [J]. Geology in China, 2007, 34(6): 1022-1031. doi: 10.3969/j.issn.1000-3657.2007.06.008
    [7]
    李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气(地质), 1993, 7(6):11-17. [LI Pinglu. Cenozoic Tectonic movement in the Pearl River Mouth Basin [J]. China Offshore Oil and Gas (Geology), 1993, 7(6): 11-17.
    [8]
    陈维涛, 杜家元, 龙更生, 等. 珠江口盆地海相层序地层发育的控制因素分析[J]. 沉积学报, 2012, 30(1):73-83. [CHEN Weitao, DU Jiayuan, LONG Gengsheng, et al. Analysis on controlling factors of marine sequence stratigraphy evolution in Pearl River Mouth Basin [J]. Acta Sedimentologica Sinica, 2012, 30(1): 73-83.
    [9]
    邵磊, 庞雄, 乔培军, 等. 珠江口盆地的沉积充填与珠江的形成演变[J]. 沉积学报, 2008, 26(2):179-185. [SHAO Lei, PANG Xiong, QIAO Peijun, et al. Sedimentary filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River [J]. Acta Sedimentologica Sinica, 2008, 26(2): 179-185.
    [10]
    Cao L C, Jiang T, Wang Z F, et al. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: evidence from REE, heavy minerals and zircon U–Pb ages [J]. Marine Geology, 2015, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007
    [11]
    Xiu C, Sun Z P, Zhai S K, et al. U-Pb ages of detrital zircons from deep-water Well LS33A at Lingnan Low Uplift of the Qiongdongnan Basin and their geological significances [J]. IOP Conference Series: Earth and Environmental Science, 2017, 100: 012202. doi: 10.1088/1755-1315/100/1/012202
    [12]
    Shao L, Cao L C, Pang X, et al. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 255-269. doi: 10.1002/2015GC006113
    [13]
    Shao L, Cao L C, Qiao P J, et al. Cretaceous–Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin [J]. Earth and Planetary Science Letter, 2017, 477: 97-107. doi: 10.1016/j.jpgl.2017.08.019
    [14]
    Knittel U, Walia M, Suzuki S, et al. Diverse protolith ages for the Mindoro and Romblon Metamorphics (Philippines): evidence from single zircon U-Pb dating [J]. Island Arc, 2017, 26(1): e12160. doi: 10.1111/iar.12160
    [15]
    Van Hattum M W A, Hall R, Pickard A L, et al. Provenance and geochronology of Cenozoic sandstones of northern Borneo [J]. Journal of Asian Earth Sciences, 2013, 76: 266-282. doi: 10.1016/j.jseaes.2013.02.033
    [16]
    Xu X S, O’Reilly S Y, Griffin W L, et al. The crust of Cathaysia: age, assembly and reworking of two terranes [J]. Precambrian Research, 2007, 158(1-2): 51-78. doi: 10.1016/j.precamres.2007.04.010
    [17]
    Xu Y H, Sun Q Q, Cai G Q, et al. The U-Pb ages and Hf isotopes of detrital zircons from Hainan Island, South China: implications for sediment provenance and the crustal evolution [J]. Environmental Earth Sciences, 2014, 71(4): 1619-1628. doi: 10.1007/s12665-013-2566-x
    [18]
    Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses [J]. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
    [19]
    Sláma J, Košler J, Condon D J, et al. Plešovice Zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis [J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
    [20]
    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. Journal of Petrology, 2010, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
    [21]
    Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb [J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
    [22]
    Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale [J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171
    [23]
    Vermeesch P. On the visualisation of detrital age distributions [J]. Chemical Geology, 2012, 312-313: 190-194. doi: 10.1016/j.chemgeo.2012.04.021
    [24]
    庞雄, 何敏, 朱俊章, 等. 珠二坳陷湖相烃源岩形成条件分析[J]. 中国海上油气, 2009, 21(2):86-90, 94. [PANG Xiong, HE Min, ZHU Junzhang, et al. A study on development conditions of lacustrine source rocks in Zhu Ⅱ depression, Pearl River Mouth basin [J]. China Offshore Oil and Gas, 2009, 21(2): 86-90, 94. doi: 10.3969/j.issn.1673-1506.2009.02.003
    [25]
    Morley C K. Late Cretaceous–Early Palaeogene tectonic development of SE Asia [J]. Earth-Science Reviews, 2012, 115(1-2): 37-75. doi: 10.1016/j.earscirev.2012.08.002
    [26]
    苗顺德, 张功成, 梁建设, 等. 南海北部超深水区荔湾凹陷恩平组三角洲沉积体系及其烃源岩特征[J]. 石油学报, 2013, 34(S2):57-65. [MIAO Shunde, ZHANG Gongcheng, LIANG Jianshe, et al. Delta depositional system and source rock characteristics of Enping Formation, Liwan Sag in ultra deep-water area of northern South China Sea [J]. Acta Petrolei Sinica, 2013, 34(S2): 57-65. doi: 10.7623/syxb2013S2007
    [27]
    Shao L, Cui Y C, Stattegger K, et al. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate [J]. GSA Bulletin, 2019, 131(3-4): 461-478. doi: 10.1130/B32053.1
    [28]
    Cui Y C, Shao L, Qiao P J, et al. Upper Miocene–Pliocene provenance evolution of the Central Canyon in northwestern South China Sea [J]. Marine Geophysical Research, 2019, 40(2): 223-235. doi: 10.1007/s11001-018-9359-2
    [29]
    邵磊, 崔宇驰, 乔培军, 等. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示[J]. 古地理学报, 2019, 21(2):216-231. [SHAO Lei, CUI Yuchi, QIAO Peijun, et al. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution [J]. Journal of Palaeogeography, 2019, 21(2): 216-231. doi: 10.7605/gdlxb.2019.02.013
    [30]
    柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2):234-242. [LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration [J]. Acta Petrolei Sinica, 2011, 32(2): 234-242. doi: 10.7623/syxb201102007
  • Related Articles

    [1]DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LU Rong. MORB trace element geochemistry in the eastern of southwest indian ridge and its indication for the composition of mantle source[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 99-107. DOI: 10.16562/j.cnki.0256-1492.2021121501
    [2]CHEN Kean, ZHANG Huichao, FANG Haoyuan, TAO Chunhui, LIANG Jin, YANG Weifang, LIAO Shili. Mode of silver occurrence in pyrite from the Edmond hydrothermal field, Central Indian Ridge: mineralogical evidence[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 84-92. DOI: 10.16562/j.cnki.0256-1492.2022101101
    [3]WANG Conghao, LIU Jia, TAO Chunhui, LI Wei. Deep magmatic process of new volcano ridge in Segment 27, Southwest Indian Ridge: Constraints from plagioclase phenocrysts[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 11-20. DOI: 10.16562/j.cnki.0256-1492.2022040101
    [4]SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. DOI: 10.16562/j.cnki.0256-1492.2021021701
    [5]CAI Yiyang, HAN Xiqiu, QIU Zhongyan, WANG Yejian, LI Mou, Samuel Olatunde Popoola. Characteristics, distribution and implication of hydrothermal minerals in Tianxiu Hydrothermal Field, Carlsberg Ridge, northwest Indian Ocean[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 36-45. DOI: 10.16562/j.cnki.0256-1492.2019101201
    [6]SHANG Luning, HU Gang, YUAN Zhongpeng, QI Jianghao, PAN Jun. Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 1-16. DOI: 10.16562/j.cnki.0256-1492.2020042201
    [7]LIN Zhen, YU Hongjun, XU Xingyong, YANG Jichao, YI Liang, FU Tengfei, LV Wenzhe. Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 14-29. DOI: 10.16562/j.cnki.0256-1492.2018.05.002
    [8]YU Zhihua, FAN Dejiang, ZHANG Aibin, SUN Xiaoxia, YANG Zuosheng. MINERALOGY AND GEOCHEMISTRY OF THE Co-RICH FERROMANGANESE CRUSTS FROM THE SOUTH WEST INDIAN RIDGE[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 71-80. DOI: 10.3724/SP.J.1140.2013.06071
    [9]HE Gaowen, DENG Xiguang, YANG Shengxiong. GEOLOGICAL CHARACTERISTICS OF POLYMETALLIC NODULES IN THE CENTRAL INDIAN OCEAN AND COMPARISON WITH THOSE FROM CC ZONE IN THE EASTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 21-30. DOI: 10.3724/SP.J.1140.2011.02021
    [10]CAO Hong, CAO Zhimin. REVIEW OF SUBMARINE HYDROTHERMAL ACTIVITIES IN SOUTHWEST INDIAN RIDGE[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 67-75. DOI: 10.3724/SP.J.1140.2011.01067
  • Cited by

    Periodical cited type(2)

    1. 杨丹丹,刘盛,张志顺,赵彦彦,杨俊,魏浩天,张广璐,孙国静,郭晓强. 南海北部神狐海域不同粒级沉积物的地球化学特征及其物源指示意义. 中国海洋大学学报(自然科学版). 2022(10): 109-126 .
    2. 熊伟,梅西,韩宗珠,王中波,张勇. 东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示. 海洋地质前沿. 2020(10): 22-31 .

    Other cited types(2)

Catalog

    Article views (3070) PDF downloads (75) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return