LIN Zhen, YU Hongjun, XU Xingyong, YANG Jichao, YI Liang, FU Tengfei, LV Wenzhe. Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 14-29. DOI: 10.16562/j.cnki.0256-1492.2018.05.002
Citation: LIN Zhen, YU Hongjun, XU Xingyong, YANG Jichao, YI Liang, FU Tengfei, LV Wenzhe. Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 14-29. DOI: 10.16562/j.cnki.0256-1492.2018.05.002

Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)

More Information
  • Received Date: May 04, 2017
  • Revised Date: June 11, 2017
  • The multi-origin sediments on the southwest Indian Ridge (SWIR) are the archive of environmental evolution of the region. The study of sediment characteristics and provenances founded the basis of paleoceanographic study. In this paper, we analyzed the deep-sea sediment samples from a gravity core sampled at 34.9°S on the spreading SWIR, and a comprehensive data set was constructed for their bulk chemical compositions, including major elements, trace elements, and bio-components. As the data show, the bulk samples are dominated by bio-components, consisting of high bio-carbonate and low bio-silica. The distribution patterns of major elements are rather accordant. Except for Ca, Sr, and LOI, the correlation coefficient of other major elements are greater than 0.8. Based on the properties of bio-components of sediment, we computed the weight percentage of each bio-component. Removed the bio-components from the bulk, we recalculated the weight percentage of non-biotic elements. The data is used as geochemical proxies to study the potential sources. It is found that the abiotic component of the sediment is mainly terrestrial and local origin. The primary source is the aeolian dust from southern Africa, with a small amount of deposits from hydrothermal sulfide and manganese crust.
  • [1]
    Matsuoka H. 23. A new method to evaluate dissolution of CaCO3 in the deep-sea sediments[J].日本古生物学會報告·紀事(新編), 1990, 1990 (157): 430-434.
    [2]
    黄大松, 张霄宇, 张国堙, 等.西南印度洋中脊48.6°~51.7°E沉积物地球化学特征[J].地质科技情报, 2016, 35 (1): 22-29.

    HUANG Dasong, ZHANG Xiaoyu, ZHANG Guoyin, et al. Geochemical characteristics of sediments in Southwest Indian Ridge 48.6°~51.7°E[J]. Geological Science and Technology Information, 2016, 35 (1): 22-29.
    [3]
    陈圆圆, 于炳松, 苏新, 等.西南印度洋中脊钙质沉积物地球化学及矿物学特征[J].地质科技情报, 2013, 32 (1): 107-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201301019

    CHEN Yuanyuan, YU Bingsong, SU Xin, et al. Mineralogical and geochemical characteristics of the calcareous sediments in Southwest Indian Ridg[J]. Geological Science and Technology Information, 2013, 32 (1): 107-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201301019
    [4]
    Kolla V, Bé A W H, Biscaye P E. Calcium carbonate distribution in the surface sediments of the Indian Ocean[J]. Journal of Geophysical Research, 1976, 81 (15): 2605-2616. doi: 10.1029/JC081i015p02605
    [5]
    Banakar V K, Parthiban G, Pattan J N, et al. Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: an assessment of biogenic and detrital influences on elemental burial on the seafloor[J]. Chemical Geology 1998, 147: 217-232. doi: 10.1016/S0009-2541(98)00015-1
    [6]
    Kolla V, Kidd R B. Sedimentation and Sedimentary Processes in the Indian Ocean[Z]: Springer US, 1982: 1-50.
    [7]
    Li Z, Chu F, Jin L, et al. Major and trace element composition of surface sediments from the Southwest Indian Ridge: evidence for the incorporation of a hydrothermal component[J]. Acta Oceanologica Sinica, 2016, 35 (2): 101-108. doi: 10.1007/s13131-015-0678-8
    [8]
    Mascarenhas-Pereira M B L, Nath B N. Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements[J]. Marine Chemistry, 2010, 121 (1-4): 49-66. doi: 10.1016/j.marchem.2010.03.004
    [9]
    Luyendyk B P, Davies T A, Results of dsdp leg 26 and the geologic history of the southern indian ocean[R]. Initial Reports of the Deep Sea Drilling Project, 1974, 26.
    [10]
    Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49 (6): 621-635. doi: 10.2343/geochemj.2.0361
    [11]
    Wilson D J, Piotrowski A M, Galy A, et al. Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography[J]. Geochimica et Cosmochimica Acta, 2013, 109: 197-221. doi: 10.1016/j.gca.2013.01.042
    [12]
    McCave I N R R S. Charles Darwin Cruise 129, report[R]. Dep. of Earth Sci., 2001,
    [13]
    陶春辉, 李怀明, 黄威, 等.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J].科学通报, 2011, 56: 2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009

    TAO Chunhui, LI Huaiming, HUANG Wei, et al. Mineralogical and geochemical features of sulfide chimney from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Sci Bull, 2011, 56: 2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009
    [14]
    于淼, 苏新, 陶春辉, 等.西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J].现代地质, 2013, 23 (3): 497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001

    YU Miao, SU Xin, TAO Chunhui, et al. Petrological and geochemical features of basalts at 49.6°E and 50.5°E Hydrothermal Fields along the Southwest Indian Ridge[J]. Geoscience, 2013, 23 (3): 497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001
    [15]
    Tao C, Li H, Huang W, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56 (26): 2828-2838. doi: 10.1007/s11434-011-4619-4
    [16]
    Tao C, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40 (1): 47-50. doi: 10.1130/G32389.1
    [17]
    Zeng Z, Ma Y, Yin X, et al. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2015, 16 (8): 2679-2693. doi: 10.1002/2015GC005812
    [18]
    McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150000 years[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2005, 363 (1826): 81-99. doi: 10.1098/rsta.2004.1480
    [19]
    Huneke H, Mulder T. Deep-sea Sediments[Z]. Elsevier, 2011.
    [20]
    Kolla V, Henderson L, Biscaye P E. Clay mineralogy and sedimentation in the western Indian ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1976, 23 (10): 949-961. doi: 10.1016/0011-7471(76)90825-1
    [21]
    Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426 (6965): 405-412. doi: 10.1038/nature02128
    [22]
    Toole J M, Warren B A. A hydrographic section across the subtropical South Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40 (10): 1973-2019. doi: 10.1016/0967-0637(93)90042-2
    [23]
    李江海, 李洪林, 韩喜球, 等, 印度洋底大地构造图[Z].地质出版社, 2015.

    LI Jianghai, LI Honglin, HAN Xiqiu, et al. Indian Ocean Geostructure Map[Z]. Geology Publisher, 2015.
    [24]
    韦刚健, 刘颖, 李献华, 等.南海沉积物中过剩铝问题的探讨[J].矿物岩石地球化学通报, 2003, 22(1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005

    WEI Gangjian, LIU Ying, LI Xianhua, et al. Excess Al in the sediments from South China Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22 (1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005
    [25]
    Morse J W, Formation and Diagenesis of Carbonate Sediments[Z]. In: Mackenzie, F.T. (Ed.), Elsevier, Amsterdam, 2003.
    [26]
    邓宏文, 钱凯.沉积地球化学与环境分析[M].甘肃科学技术出版社, 1993.

    DENG Hongwen, QIAN Kai. Sediment Geochemistry and Environment Analyse[M]. Gansu Science Technique Publish, 1992.
    [27]
    Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments[J]. Geochemical et Cosmochimica Acta, 1996, 60: 1479-1495. doi: 10.1016/0016-7037(96)00042-7
    [28]
    Invitation to Oceanography, Fifth Edition. Chapter4. Marine Sedimentation[Z]. Jones and Bartlett Publishers. www.jbpub.com/oceanlink.
    [29]
    Ramsay Ats. The distribution of calcium carbonate in deep sea sediments[R]. The Society of Economic Paleontologists and Mineralogists (SEPM) Studies in Paleo-Oceanography (SP20), 1974.
    [30]
    Nairn AEM, Stehli FG. The Ocean Basins and Margins- the Indian Ocean[Z]. 1982.
    [31]
    Kolla V, Sullivan L, Streeter S S, et al. Spreading of Antarctic Bottom Water and its effects on the floor of the Indian Ocean inferred from bottom-water potential temperature, turbidity, and sea-floor photography[J]. Marine Geology, 1976, 21 (3): 171-189. doi: 10.1016/0025-3227(76)90058-X
    [32]
    L R R, Shan G. Composition of the continental crust[J]. Treatise Geochem, 2003, 3:1-64.
    [33]
    Dymond J. Geochemistry of Nazca plate surface sediments: An evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources[J]. Geological Society of America Memoirs, 1981, 154 (133-174).
    [34]
    Emerson S R, Archer D. Calcium carbonate preservation in the ocean[J]. Philosophical Transactions of the Royal Society A, 1990, 331: 29-40. doi: 10.1098/rsta.1990.0054
    [35]
    Warren B A. Bottom water transport through the Southwest Indian Ridge[J]. Deep Sea Research, 1978, 25 (3): 315-321. doi: 10.1016/0146-6291(78)90596-9
    [36]
    Mclennan S M. Rare earth elements and sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy, 1989, 21 (8): 169-200.
    [37]
    Boynton WV. Chapter 3-Cosmochemistry of the Rare Earth Elements: Meteorite Studies[Z]. 1983: 63-114.
    [38]
    Windom H L. Eolian contributions to marine sediments[J]. Journal Sedimentatry of Petrology, 1975, 45: 520-529.
    [39]
    Schott F A, Xie S-P, McCreary J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47 (1).
    [40]
    Talley L D, Pickard G L, Emery W J, et al. Chapter 11-Indian Ocean. Descriptive Physical Oceanography (Sixth Edition)[Z]. Boston: Academic Press, 2011: 363-399.
    [41]
    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68 (2): 263-283. doi: 10.1016/S0016-7037(03)00422-8
    [42]
    Nance W B, Taylor S. Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1976, 40(12): 1539-1551. doi: 10.1016/0016-7037(76)90093-4
    [43]
    Middleton N J, Betzer P R, Bull P A. Long-range transport of 'giant' aeolian quartz grains: linkage with discrete sedimentary sources and implications for protective particle transfer[J]. Marine Geology, 2001, 177 (3-4): 411-417. doi: 10.1016/S0025-3227(01)00171-2
    [44]
    Does M V D, Korte L F, Munday C I, et al. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic[J]. Atmospheric Chemistry & Physics, 2016, 1-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ec354e9a6463592a7c956d14f98eb0b
    [45]
    Schütz L, Jaenicke R, Pietrek H. Saharan dust transport over the North Atlantic Ocean[J]. Geological Society of America Special Papers, 1981, 186: 87-100.
    [46]
    Gillette D A, Gillette D A. Environmental factors affecting dust emission by wind erosion[J]. Saharan Dust, 1979: 71-91.
    [47]
    Liu E, Wang XC, Zhao JX, et al. Geochemical and Sr-Nd isotopic variations in a deep-sea sediment core from Eastern Indian Ocean: Constraints on dust provenances, paleoclimate and volcanic eruption history in the last 300, 000 years[J]. Marine Geology, 2015, 367: 38-49. doi: 10.1016/j.margeo.2015.05.005
    [48]
    Franchi F, Turetta C, Cavalazzi B, et al. Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maíder Basin, Eastern Anti-Atlas, Morocco): Implications for early diagenetic processes[J]. Sedimentary Geology, 2016, 343: 56-71. doi: 10.1016/j.sedgeo.2016.07.008
    [49]
    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79 (1): 37-55.
    [50]
    Marx S K, Kamber B S, McGowan H A. Provenance of long-travelled dust determined with ultra-trace-element composition: a pilot study with samples from New Zealand glaciers[J]. Earth Surface Processes and Landforms, 2005, 30 (6): 699-716. doi: 10.1002/esp.1169
    [51]
    Jahn B-m, Gruau G, Glikson A Y. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution[J]. Contributions to Mineralogy and Petrology, 1982, 80 (1): 25-40. doi: 10.1007/BF00376732
    [52]
    Barton Jr J M, Doig R, Smith C B, et al. Isotopic and REE characteristics of the intrusive charnoenderbite and enderbite geographically associated with the Matok Pluton, Limpopo Belt, southern Africa[J]. Precambrian Research, 1992, 55 (1-4): 451-467. doi: 10.1016/0301-9268(92)90039-Q
    [53]
    Kröner A, Tegtmeyer A. Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, southern Africa, and implications for early crustal evolution[J]. Precambrian Research, 1994, 67 (1-2): 109-139. doi: 10.1016/0301-9268(94)90007-8
    [54]
    German C R. Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998[J]. Geochemistry, Geophysics, Geosystems, 2003, 4 (7).
    [55]
    余芝华, 范德江, 张爱滨, 等.西南印度洋中脊富钴结壳的矿物学和地球化学[J].海洋地质与第四纪地质, 2013, 33 (6): 71-80. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201306012.htm

    YU Zhihua, FAN Dejiang, ZHANG Aibin, et al. Mineralogy and geochemistry of the Co-rich ferromanganese crusts from the south west indian ridgemar[J]. Marine Geology & Quaternary Geology, 2013, 33 (6): 71-80. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201306012.htm
    [56]
    Glasby G P. Mineralogy, geochemistry, and origin of Pacific red clays: A review[J]. New Zealand Journal of Geology and Geophysics, 1991, 34 (2): 167-176. doi: 10.1080/00288306.1991.9514454
    [57]
    Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90 (3): 297-314. doi: 10.1016/0012-821X(88)90132-X
    [58]
    Sun S-S, Nesbitt R W, Sharaskin A Y. Geochemical characteristics of mid-ocean ridge basalts[J]. Earth and Planetary Science Letters, 1979, 44 (1): 119-138. doi: 10.1016/0012-821X(79)90013-X
    [59]
    余芝华.西南印度洋中脊富钴结壳矿物学及地球化学研究[D].中国海洋大学, 2013.

    YU Zhihua. Research of geochemistry and mineralogy of Co-rich crust from the south west Indian ridge[D]. Ocean University of China, 2013.
  • Related Articles

    [1]DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LU Rong. MORB trace element geochemistry in the eastern of southwest indian ridge and its indication for the composition of mantle source[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 99-107. DOI: 10.16562/j.cnki.0256-1492.2021121501
    [2]DING Xue, HU Bangqi, ZHAO Jingtao, WANG Feifei, HUANG Wei, LI Panfeng, LIU Jia, GUO Jianwei, CUI Ruyong. Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 61-70. DOI: 10.16562/j.cnki.0256-1492.2022122402
    [3]SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. DOI: 10.16562/j.cnki.0256-1492.2021021701
    [4]AI Lina, HAN Zongzhu, WU Xiao, BI Naishuang, WANG Houjie. Geochemical characteristics of clay-sized sediments of the Yangtze and Yellow Rivers and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 109-118. DOI: 10.16562/j.cnki.0256-1492.2019050603
    [5]YANG Baoju, WU Yonghua, LIU Jihua, LIU Yanguang, ZHANG Hui, WANG Xiaojing, LI Li. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37. DOI: 10.16562/j.cnki.0256-1492.2018.02.003
    [6]LAN Xianhong, LI Rihui, WANG Zhongbo, CHEN Xiaohui, GU Zhaofeng, XU Xiaoda. GEOCHMICAL RECORDS OF SURFACE SEDIMENTS IN THE WESTERN BOHAI SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 75-85. DOI: 10.16562/j.cnki.0256-1492.2017.03.008
    [7]LI Shuyuan, MIAO Fengmin, ZHAO Quanmin, ZHAO Jianhua, . GEODCHEMISTRY OF SURFACE SEDIMENTS OFF SOUTHWEST LIAODONG PENINSULA AND IN MID-BOHAI SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 123-130. DOI: 10.3724/SP.J.1140.2010.04123
    [8]DONG Aiguo, ZHAI Shikui, Zabel Matthias, YU Zenghui, CHU Zhongxin. GEOCHEMISTRY CHARACTERS OF THE CORE SEDIMENTS IN THE YANGTZE ESTUARY AND THE RESPONSE TO HUMAN ACTIVITIES[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 107-114. DOI: 10.3724/SP.J.1140.2009.04107
    [9]ZHANG Kai-bi. GEOCHEMISTRY ENVIRONMENT QUALITY OF LITTORAL AND NERITIC SEDIMENTS IN FUJIAN PROVINCE[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 45-52.
    [10]LIU Guang-hu, LI Jun, CHEN Dao-hua, LIU Jian. GEOCHEMISTRY OF SURFACE SEDIMENTS IN THE TAIXINAN (SOUTHWESTERN TAIWAN) SEA AREA IN THE NORTHEASTERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 61-68.
  • Cited by

    Periodical cited type(4)

    1. 毕云天,胡日军,陈娟娟,李毅,伊兆晗,陈晓磁,朱龙海,尹砚军,刘波. 福宁湾及附近海域悬沙粒度与影响因素. 海洋地质与第四纪地质. 2024(01): 15-29 . 本站查看
    2. 闵建雄,李广雪,乔璐璐,丁咚,刘世东. 基于MODIS的浙闽近海表层悬浮体时空变化特征分析. 海洋地质前沿. 2022(10): 69-78 .
    3. 伊兆晗,胡日军,李毅,陈晓磁,陈娟娟,孟令鹏,朱龙海,张晓东. 福宁湾海域夏季大潮期悬浮泥沙输运特征及控制因素. 海洋地质与第四纪地质. 2021(06): 53-66 . 本站查看
    4. 孟令鹏,胡日军,李毅,袁晓东,朱龙海,郭俊杰. 福宁湾海域冬季大潮期悬浮泥沙输运特征. 海洋地质与第四纪地质. 2020(03): 61-73 . 本站查看

    Other cited types(0)

Catalog

    Article views (2422) PDF downloads (50) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return