ZHOU Jiaxing, YU Juan, YANG Lijun, WU Lijie. Sedimentary characteristics of the Early and Middle Holocene loess in Tongchuan area and their implications for paleoclimate[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 160-166. DOI: 10.16562/j.cnki.0256-1492.2018091901
Citation: ZHOU Jiaxing, YU Juan, YANG Lijun, WU Lijie. Sedimentary characteristics of the Early and Middle Holocene loess in Tongchuan area and their implications for paleoclimate[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 160-166. DOI: 10.16562/j.cnki.0256-1492.2018091901

Sedimentary characteristics of the Early and Middle Holocene loess in Tongchuan area and their implications for paleoclimate

More Information
  • Received Date: September 18, 2018
  • Revised Date: December 18, 2018
  • Available Online: February 25, 2020
  • The grain size of the loess and palaeosol in the Tongchuan section was studied as the main subject of this paper. Combining the magnetic susceptibility data, we analyzed the paleoclimate changes during the period from 11.4 to 1.5 kaBP. It is revealed that: (1) The loess-palaeosol deposits in the profile of Tongchuan are silt dominated (69.78%) over clay (28.35%) and sand (1.87%). (2) Silt and sand are higher in loess but lower in paleosol, while the values of clay particles and magnetization were lower in loess but higher in paleosol layers. (3) The variation trend of the clay (<4 μm), silt (4~63 μm) and magnetic susceptibility index have good correspondence to the loess-palaeosol alternation and the cold and dry climatic events between 11.4~1.5 kaBP. Based upon it the climate change in this area can be divided into four stages. In the period of 11.4~10.2 kaBP, the climate was very dry and cold; in the period of 10.2~9.1 kaBP, temperature gradually increased, and the climate was slightly warm and dry; during the period of 9.1~4.4 kaBP, the climate was warm and humid; while in the period of 4.4~1.5 kaBP, climate gradually turned to cold and dry.
  • [1]
    Lu H Y, An Z S. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau [J]. Science in China Series D: Earth Sciences, 1998, 41(6): 626-631. doi: 10.1007/BF02878745
    [2]
    Guan H C, Zhu C, Zhu T X, et al. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu lake basin: implications for the origin, palaeoclimatic change and provenance [J]. Journal of Asian Earth Sciences, 2016, 117: 170-183. doi: 10.1016/j.jseaes.2015.12.013
    [3]
    杨石岭, 丁仲礼. 黄土高原黄土粒度的空间变化及其古环境意义[J]. 第四纪研究, 2017, 37(5):934-944. [YANG Shiling, DING Zhongli. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment [J]. Quaternary Sciences, 2017, 37(5): 934-944. doi: 10.11928/j.issn.1001-7410.2017.05.02
    [4]
    鹿化煜, 安芷生. 洛川黄土粒度组成的古气候意义[J]. 科学通报, 1997, 42(1):67-69. [LU Huayu, AN Zhisheng. Paleoclimatic significance of the composition of Luochuan loess [J]. Chinese Science Bulletin, 1997, 42(1): 67-69.
    [5]
    An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years [J]. Quaternary Research, 1991, 36(1): 29-36. doi: 10.1016/0033-5894(91)90015-W
    [6]
    Sun Y B, An Z S, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 2010, 297(3-4): 525-535. doi: 10.1016/j.jpgl.2010.07.004
    [7]
    于昊, 彭廷江, 李孟, 等. 西部黄土高原兰州黄土磁化率增强模式及其驱动机制[J]. 海洋地质与第四纪地质, 2018, 38(2):165-174. [YU Hao, PENG Tingjiang, LI Meng, et al. Magnetic susceptibility enhancement model and its driving mechanism of Lanzhou loess on the Western Loess Plateau [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 165-174.
    [8]
    Zhao H, Chen F H, Li S H, et al. A record of Holocene climate change in the Guanzhong Basin, China, based on optical dating of a loess-palaeosol sequence [J]. The Holocene, 2007, 17(7): 1015-1022. doi: 10.1177/0959683607080530
    [9]
    黄春长, 庞奖励, 黄萍, 等. 关中盆地西部黄土台塬全新世气候事件研究[J]. 干旱区地理, 2002, 25(1):10-15. [HUANG Chunchang, PANG Jiangli, HUANG Ping, et al. Holocene climatic events on the loess tableland in the Western Guanzhong Basin, China [J]. Arid Land Geography, 2002, 25(1): 10-15. doi: 10.3321/j.issn:1000-6060.2002.01.003
    [10]
    庞奖励, 黄春长, 刘安娜, 等. 黄土高原南部全新世黄土-古土壤序列若干元素分布特征及意义[J]. 第四纪研究, 2007, 27(3):357-364. [PANG Jiangli, HUANG Chunchang, LIU Anna, et al. Ba/Sr and Rb/Sr ratio of Holocene loess-palaeosol sequences and its significance in South Loess Plateau, China [J]. Quaternary Sciences, 2007, 27(3): 357-364. doi: 10.3321/j.issn:1001-7410.2007.03.007
    [11]
    贾耀锋, 庞奖励, 黄春长, 等. 关中盆地全新世黄土-土壤剖面微量元素的地球化学特征及其古气候意义[J]. 土壤通报, 2012, 43(3):513-520. [JIA Yaofeng, PANG Jiangli, HUANG Chunchang, et al. Geochemistry of trace elements and their paleoclimatic implications in the loess-soil section in Guanzhong basin [J]. Chinese Journal of Soil Science, 2012, 43(3): 513-520.
    [12]
    刘安娜, 庞奖励, 黄春长, 等. 甘肃庄浪全新世黄土-古土壤序列元素分布特征及意义[J]. 地球化学, 2006, 35(4):453-458. [LIU Anna, PANG Jiangli, HUANG Chunchang, et al. Element distributions of the Zhuanglang Holocene loess-paleosol sequence, Gansu Province and its significance [J]. Geochimica, 2006, 35(4): 453-458. doi: 10.3321/j.issn:0379-1726.2006.04.013
    [13]
    王琳栋, 杨太保, 梁烨, 等. 会宁地区全新世黄土沉积粒度特征及其古气候意义[J]. 干旱区研究, 2016, 33(6):1150-1156. [WANG Lindong, YANG Taibao, LIANG Ye, et al. Grain size characteristics in the loess-paleosol at Huining section and its signification to paleoclimate during Holocene [J]. Arid Zone Research, 2016, 33(6): 1150-1156.
    [14]
    贾佳, 夏敦胜, 魏海涛, 等. 耀县黄土记录的全新世东亚冬夏季风非同步演化[J]. 第四纪研究, 2009, 29(5):966-975. [JIA Jia, XIA Dunsheng, WEI Haitao, et al. Asynchronous evolution of East Asia summer and winter monsoons of the Holocene recorded by Yao County loess [J]. Quaternary Sciences, 2009, 29(5): 966-975. doi: 10.3969/j.issn.1001-7410.2009.05.14
    [15]
    Xia D S, Jia J, Li G H, et al. Out-of-phase evolution between summer and winter East Asian monsoons during the Holocene as recorded by Chinese loess deposits [J]. Quaternary Research, 2014, 81(3): 500-507. doi: 10.1016/j.yqres.2013.11.002
    [16]
    周家兴, 吴利杰, 于娟, 等. 铜川地区11.4~1.5 kaBP期间黄土地球化学风化特征及其古气候意义[J]. 地球与环境, 2019, 47(1):64-73. [ZHOU Jiaxing, WU Lijie, YU Juan, et al. Characteristics of geochemical weathering of loess in the Tongchuan area during 11.4~1.5 kaBP and its paleoclimatic implications [J]. Earth and Environment, 2019, 47(1): 64-73.
    [17]
    Zhao C L, Shao M A, Jia X U, et al. Particle size distribution of soils (0-500 cm) in the Loess Plateau, China [J]. Geoderma Regional, 2016, 7(3): 251-258. doi: 10.1016/j.geodrs.2016.05.003
    [18]
    Buggle B, Hambach U, Müller K, et al. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences [J]. CATENA, 2014, 117: 4-22. doi: 10.1016/j.catena.2013.06.012
    [19]
    Liu Q S, Deng C L, Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols [J]. Geophysical Journal International, 2005, 161(1): 102-112. doi: 10.1111/j.1365-246X.2005.02564.x
    [20]
    An Z S, Liu T S, Lu Y C, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China [J]. Quaternary International, 1990, 7-8: 91-95. doi: 10.1016/1040-6182(90)90042-3
    [21]
    陈璞皎, 郑祥民, 周立旻, 等. 宁镇地区下蜀黄土粒度特征及其古环境意义[J]. 地质科技情报, 2017, 36(5):7-13. [CHEN Pujiao, ZHENG Xiangmin, ZHOU Limin, et al. Grain size distribution and its significance of the Xiashu loess in Nanjing-Zhenjiang area [J]. Geological Science and Technology Information, 2017, 36(5): 7-13.
    [22]
    汪海斌, 陈发虎, 张家武. 黄土高原西部地区黄土粒度的环境指示意义[J]. 中国沙漠, 2002, 22(1):21-26. [WANG Haibin, CHEN Fahu, ZHANG Jiawu. Environmental significance of grain size of loess-paleosol sequence in Western part of Chinese Loess Plateau [J]. Journal of Desert Research, 2002, 22(1): 21-26. doi: 10.3321/j.issn:1000-694X.2002.01.005
    [23]
    宋扬, 郝青振, 葛俊逸, 等. 黄土高原表土磁化率与气候要素的定量关系研究[J]. 第四纪研究, 2012, 32(4):679-689. [SONG Yang, HAO Qingzhen, GE Junyi, et al. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau [J]. Quaternary Sciences, 2012, 32(4): 679-689. doi: 10.3969/j.issn.1001-7410.2012.04.13
    [24]
    路彩晨, 贾佳, 高福元, 等. 全新世安塞剖面的磁学特征变化历史及其受控因子分析[J]. 海洋地质与第四纪地质, 2018, 38(5):178-184. [LU Caichen, JIA Jia, GAO Fuyuan, et al. Holocene variations of paleomagnetic characteristics along the loess section of Ansai and their controlling factors [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 178-184.
    [25]
    Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation [J]. Scientific Reports, 2015, 5: 11186. doi: 10.1038/srep11186
    [26]
    侯光良, 方修琦. 中国全新世气温变化特征[J]. 地理科学进展, 2011, 30(9):1075-1080. [HOU Guangliang, FANG Xiuqi. Characteristics of Holocene temperature change in China [J]. Progress in Geography, 2011, 30(9): 1075-1080. doi: 10.11820/dlkxjz.2011.09.001
    [27]
    Wang Y B, Liu X Q, Herzschuh U. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia [J]. Earth-Science Reviews, 2010, 103(3-4): 135-153. doi: 10.1016/j.earscirev.2010.09.004
    [28]
    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
    [29]
    Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
  • Related Articles

    [1]HU Jiasen, ZHANG Guoliang. High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102
    [2]KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202
    [3]DENG Ke. Tectonic characteristics of the Binhai Fault Zone in Taiwan Strait[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 72-80. DOI: 10.16562/j.cnki.0256-1492.2019081301
    [4]XU Min, DI Huizhe, ZHOU Zhiyuan, LI Haiyong, LIN Jian. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 58-70. DOI: 10.16562/j.cnki.0256-1492.2019063001
    [5]LI Jian, ZHAN Wenhuan, ZHU Junjiang, SUN Jie, FENG Yingci, JIANG Liantin, GUO Lei, TANG Qinqin. A PRELIMINARY STUDY ON STATIC STRESS TRIGGERING EFFECTS ON MANILA SUBDUCTION ZONE BY THE PHILIPPINE Mw 7.7 EARTHQUAKE 1990[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 93-99. DOI: 10.16562/j.cnki.0256-1492.2017.06.010
    [6]ZHAN Wenhuan, LI Jian, TANG Qinqin. SUBDUCTION OF THE PALEO-SPREADING-RIDGE IN EASTERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 1-11. DOI: 10.16562/j.cnki.0256-1492.2017.06.001
    [7]KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005
    [8]LI Sanzhong, ZHENG Qiliang, LI Xiyao, ZHAO Shujuan, SUO Yanhui, GUO Lingli, WANG Yongming, ZHOU Zaizheng, LIU Xiaoguang, LAN Haoyuan, ZHANG Jian, GUO Runhua, LI Shaojun. Triassic Subduction Polarity and Orogenic Process of the Sulu Orogen, East China[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 18-32. DOI: 10.16562/j.cnki.0256-1492.2017.04.002
    [9]CHEN Ping, ZHENG Yanpeng, LIU Baohua. GEOPHYSICAL FEATURES OF THE NANKAI TROUGH SUBDUCTION ZONE AND THEIR DYNAMIC SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 153-160. DOI: 10.3724/SP.J.1140.2014.06153
    [10]CHEN Zhihao, LI Jiabiao, WU Ziyin, WU Zhenli, SHANG Jihong. TECTONIC EVOLUTION IMPLICATION OF GEOMETRY SHAPE CHARACTERISTICS FOR MANILA TRENCH[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 59-65. DOI: 10.3724/SP.J.1140.2009.02059

Catalog

    Article views (2376) PDF downloads (54) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return