KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005
Citation: KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005

TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE

More Information
  • Received Date: May 30, 2017
  • Revised Date: June 18, 2017
  • The correlation coefficient between shallow earthquakes and plate subduction rates along the IBM is calculated in this paper. It suggests that the plate subduction rate is an important parameter to determine the spatial distribution of earthquakes. Statistic of earthquakes reveals that intermediate to deep (60~300 km) seated earthquakes along the Mariana Arc show an obvious feature of segmentation corresponding to the relief of sea floor. It is inferred to be caused by over supply of fluids during the seamount subduction, which leads to the break and local deformation of the subducting slab and change in coupling of thermal pattern. A counter surface of 8.0 km/s from the global P-wave model beneath the Mariana Arc is extracted and presented by the Paraview software. Two gaps are observed under the north and south ends of the Mariana Arc, owing to the tearing up of the subducting slab, which is stronger in the north and weaker in the south, and the difference in subduction rate in the northern Ogasawara Plateau and the southern Caroline Ridge respectively. The gravity and earthquake data also reveals that in the southern part of the Mariana Arc there may be strong interplate coupling, and 3D P-wave speed map shows that the 410~670 km remanent Pacific Plate beneath the Philippine Sea Plate extend to the southwest and there is an indirect contact with the subducting Pacific plate from the southern Mariana Arc. A preliminary deduction is that the deep structure and the buoyant Caroline Ridge may determine the existence of the rotation pole located at 8°N, 137.3°E in the southern Mariana.
  • [1]
    Kanamori H. Great earthquakes at island arcs and the lithosphere[J]. Tectonophysics, 1971, 12(3): 187-198. doi: 10.1016/0040-1951(71)90003-5
    [2]
    Lay T, Kanamori H, Ruff L J. The asperity model and the nature of large subduction zone earthquakes[J]. Earthquake Prediction Research, 1982, 1(1): 3-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2007JB005189
    [3]
    Chiu J M, Isacks B L, Cardwell R K. 3-D configuration of subducted lithosphere in the Western Pacific[J]. Geophysical Journal International, 1991, 106(1): 99-111. doi: 10.1111/j.1365-246X.1991.tb04604.x
    [4]
    Jaxybulatov K, Koulakov I, Dobretsov N L. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results[J]. Solid Earth, 2013, 4(1): 59-73. doi: 10.5194/se-4-59-2013
    [5]
    Kelleher J, McCann W. Buoyant zones, great earthquakes, and unstable boundaries of subduction[J]. Journal of Geophysical Research, 1976, 81(26): 4885-4896. doi: 10.1029/JB081i026p04885
    [6]
    Watts A B, Koppers A A P, Robinson D P. Seamount subduction and earthquakes[J]. Oceanography, 2010, 23(1): 166-173. doi: 10.5670/oceanog.2010.68
    [7]
    Ruff L J, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3): 240-252. doi: 10.1016/0031-9201(80)90117-X
    [8]
    Cloos M, Shreve R L. Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones[J]. Geology, 1996, 24(2): 107-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ba147cdabb641d7b739da89de5ad276
    [9]
    Gutscher M A, Westbrook G K. Great earthquakes in slow-subduction, low-taper margins[M]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin Heidelberg: Springer, 2009: 119-133.
    [10]
    Syracuse E M, van Keken P E, Abers G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1-2): 73-90. doi: 10.1016/j.pepi.2010.02.004
    [11]
    Heuret A, Lallemand S, Funiciello F, et al. Physical characteristics of subduction interface type seismogenic zones revisited[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(1): Q01004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010GC003230
    [12]
    邢健, 郝天珧, 胡立天, 等.对日本俯冲带与IBM俯冲带俯冲特征的地球物理研究:来自重力与震源分布数据的启示[J].地球物理学报, 2016, 59(1): 116-140. doi: 10.3969/j.issn.1672-7940.2016.01.020

    XING Jian, HAO Tianyao, HU Litian, et al. Characteristics of the Japan and IBM subduction zones: Evidence from gravity and distribution of earthquake sources[J]. Chinese Journal of Geophysics, 2016, 59(1): 116-140. doi: 10.3969/j.issn.1672-7940.2016.01.020
    [13]
    Gudmundsson ó, Sambridge M. A regionalized upper mantle (RUM) seismic model[J]. Journal of Geophysical Research, 1998, 103(B4): 7121-7136. doi: 10.1029/97JB02488
    [14]
    Miller M S, Kennett B L N, Lister G S. Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu-Bonin-Mariana arc[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 363-370. doi: 10.1016/j.epsl.2004.05.018
    [15]
    Miller M S, Gorbatov A, Kennett B L N. Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 331-342. doi: 10.1016/j.epsl.2005.04.007
    [16]
    Wei W, Xu J D, Zhao D P, et al. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 2012, 60: 88-103. doi: 10.1016/j.jseaes.2012.08.001
    [17]
    Shi X J. Spatial differences of the earthquake distribution along the island-arcs in the Western Pacific and their causes[J]. Seismology and Geology, 1998, 20(4): 399-404. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ804.013.htm
    [18]
    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[M]//Eiler J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 2003: 175-222.
    [19]
    Scholz C H, Small C. The effect of seamount subduction on seismic coupling[J]. Geology, 1997, 25(6): 487-490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2
    [20]
    Das S, Watts A B. Effect of subducting seafloor topography on the rupture characteristics of great subduction zone earthquakes[M]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin Heidelberg: Springer, 2009: 103-118.
    [21]
    Mochizuki K, Yamada T, Shinohara M, et al. Weak interplate coupling by seamounts and repeating M ~7 earthquakes[J]. Science, 2008, 321(5893): 1194-1197. doi: 10.1126/science.1160250
    [22]
    Cloos M. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture[J]. Geology, 1992, 20(7): 601-604. doi: 10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2
    [23]
    Kodaira S, Takahashi N, Nakanishi A, et al. Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake[J]. Science, 2000, 289(5476): 104-106. doi: 10.1126/science.289.5476.104
    [24]
    Husen S, Kissling E, Quintero R. Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: The cause of the 1990 Mw=7.0 Gulf of Nicoya earthquake[J]. Geophysical Research Letters, 2002, 29(8): 79-1-79-4. doi: 10.1029/2001GL014045
    [25]
    Oleskevich D A, Hyndman R D, Wang K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile[J]. Journal of Geophysical Research, 1999, 104(B7): 14965-14991. doi: 10.1029/1999JB900060
    [26]
    Currie C A, Hyndman R D, Wang K, et al. Thermal models of the Mexico subduction zone: Implications for the megathrust seismogenic zone[J]. Journal of Geophysical Research, 2002, 107(B12): ETG 15-1-ETG 15-13. doi: 10.1029/2001JB000886
    [27]
    Rosenbaum G, Gasparon M, Lucente F P, et al. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism[J]. Tectonics, 2008, 27(2): TC2008. doi: 10.1029-2007TC002143/
    [28]
    Gvirtzman Z, Stern R J. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling[J]. Tectonics, 2004, 23(2): TC2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=648906dc9ceca925718af6e55237f367
    [29]
    Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. Journal of Geophysical Research, 2006, 111(B2): B02401. https://www.researchgate.net/publication/251784776_Spatial_and_temporal_evolution_of_the_subducting_Pacific_plate_structure_along_the_western_Pacific_margin
    [30]
    Jarrard R D. Relations among subduction parameters[J]. Reviews of Geophysics, 1986, 24(2): 217-284. doi: 10.1029/RG024i002p00217
    [31]
    Pacheco J F, Sykes L R, Scholz C H. Nature of seismic coupling along simple plate boundaries of the subduction type[J]. Journal of Geophysical Research, 1993, 98(B8): 14133-14159. doi: 10.1029/93JB00349
    [32]
    Heuret A, Lallemand S. Plate motions, slab dynamics and back-arc deformation[J]. Physics of the Earth and Planetary Interiors, 2005, 149(1-2): 31-51. doi: 10.1016/j.pepi.2004.08.022
    [33]
    DeMets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letters, 1994, 21(20): 2191-2194. doi: 10.1029/94GL02118
    [34]
    Simmons N A, Myers S C, Johannesson G, et al. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction[J]. Journal of Geophysical Research, 2012, 117(B10): B10302. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228218859/
    [35]
    Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84. doi: 10.1016/0040-1951(84)90008-8
    [36]
    Seno T, Stein S, Gripp A E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data[J]. Journal of Geophysical Research, 1993, 98(B10): 17941-17948. doi: 10.1029/93JB00782
    [37]
    臧绍先, 宁杰远.西太平洋俯冲带的研究及其动力学意义[J].地球物理学报, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006

    ZANG Shaoxian, NING Jieyuan. Study on the subduction zone in Western Pacific and its implication for the geodynamics[J]. Chinese Journal of Geophysics, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006
    [38]
    Oakley A J, Taylor B, Moore G F. Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: New insights from an old margin[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(6): Q06003. http://cn.bing.com/academic/profile?id=96a3bcddad3dfcceddbbfe21b8c9d8b1&encoded=0&v=paper_preview&mkt=zh-cn
    [39]
    Hussong D M, Uyeda S. Tectonic processes and the history of the Mariana Arc: A synthesis of the results of Deep Sea Drilling Project Leg[M]//Hussong D M. Initial Report of the Deep Sea Drilling Project. 1982, 60: 909-929.
    [40]
    石学法, 鄢全树.西太平洋典型边缘海盆的岩浆活动[J].地球科学进展, 2013, 28(7): 737-750. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307001

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307001
    [41]
    Deschamps A, Fujiwara T. Asymmetric accretion along the slow-spreading Mariana Ridge[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 8622. http://cn.bing.com/academic/profile?id=88f4c1d386e77f5af90fb8789d1993f6&encoded=0&v=paper_preview&mkt=zh-cn
    [42]
    Yamazaki T, Seama N, Okino K, et al. Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22°N[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1075. http://cn.bing.com/academic/profile?id=f195b8aa347d5a4d9729a8648650ddab&encoded=0&v=paper_preview&mkt=zh-cn
    [43]
    Seama N, Okino K. Asymmetric seafloor spreading of the southern Mariana trough back-arc basin[M]//Ishibashi J, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer, 2015: 253-260.
    [44]
    宋传中, 钱德玲.西北太平洋岛弧系列成因的探讨[J].地质论评, 1993, 39(1): 1-8. doi: 10.3321/j.issn:0371-5736.1993.01.001

    SONG Chuanzhong, QIAN Deling. The genesis of the Northwest Pacific island arc system[J]. Geological Review, 1993, 39(1): 1-8. doi: 10.3321/j.issn:0371-5736.1993.01.001
    [45]
    Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis[R]. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009, doi: 10.7289/V5C8276M.
    [46]
    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the yap trench[J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86. http://cn.bing.com/academic/profile?id=38e88edc4c1ef25fe50619a63264116e&encoded=0&v=paper_preview&mkt=zh-cn
    [47]
    Okino K, Ohara Y, Kasuga S, Kato, Y. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537
    [48]
    Fujioka K, Kanamatsu T, Ohara Y, et al. Parece Vela Rift and Central Basin Fault revisited—STEPS-IV (structure, tectonics and evolution of the Philippine Sea)—cruise summary report[J]. InterRidge News, 2000, 9(1): 18-22.
    [49]
    宋永东, 马小川, 张广旭, 等.西太平洋雅浦海沟区海底热流原位测量[J].海洋地质与第四纪地质, 2016, 36(4): 51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604006

    SONG Yongdong, MA Xiaochuan, ZHANG Guangxu, et al. Heat flow in-situ measurement at yap trench of the Western Pacific[J]. Marine Geology and Quaternary Geology, 2016, 36(4): 51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604006
    [50]
    Hayes G P, Wald D J, Johnson R L. Slab1.0: A three-dimensional model of global subduction zone geometries[J]. Journal of Geophysical Research, 2012, 117(B1): B01302. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226385253/
    [51]
    Nishizawa A, Kaneda K, Watanabe N, et al. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench[J]. Earth, Planets and Space, 2009, 61(3): BF03352912. http://cn.bing.com/academic/profile?id=f39d8a3fecc8ae21fdd3d85209aa731a&encoded=0&v=paper_preview&mkt=zh-cn
    [52]
    Singh S C, Hananto N, Mukti M, et al. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra[J]. Nature Geoscience, 2011, 4(5): 308-311. doi: 10.1038/ngeo1119
    [53]
    张锦明, 游雄.地形起伏度最佳分析区域研究[J].测绘科学技术学报, 2011, 28(5): 369-373. doi: 10.3969/j.issn.1673-6338.2011.05.014

    ZHANG Jinming, YOU Xiong. Investigating optimum statistical unit of relief[J]. Journal of Geomatics Science and Technology, 2011, 28(5): 369-373. doi: 10.3969/j.issn.1673-6338.2011.05.014
    [54]
    Lallemand S. Active continental margin[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Netherlands: Springer, 2014: 1-6.
    [55]
    Dziewonski A M, Chou T A, Woodhouse J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research, 1981, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825
    [56]
    Watts A B, Ribe N M. On geoid heights and flexure of the lithosphere at seamounts[J]. Journal of Geophysical Research, 1984, 89(B13): 11152-11170. doi: 10.1029/JB089iB13p11152
    [57]
    Sandwell D T, Smith W H F. Marine gravity anomaly from GEOSAT and ERS 1 satellite altimetry[J]. Journal of Geophysical Research, 1997, 102(B5): 10039-10054. doi: 10.1029/96JB03223
    [58]
    Koppers A A P, Watts A B. Intraplate seamounts as a window into deep earth processes[J]. Oceanography, 2010, 23(1): 42-57. doi: 10.5670/oceanog.2010.61
    [59]
    Dominguez S, Lallemand S E, Malavieille J, et al. Upper plate deformation associated with seamount subduction[J]. Tectonophysics, 1998, 293(3-4): 207-224. doi: 10.1016/S0040-1951(98)00086-9
    [60]
    Bautista B C, Bautista M L P, Oike K, et al. A new insight on the geometry of subducting slabs in northern Luzon, Philippines[J]. Tectonophysics, 2001, 339(3-4): 279-310. doi: 10.1016/S0040-1951(01)00120-2
    [61]
    Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956): 367-373. doi: 10.1038/nature01961
    [62]
    Fryer P, Smoot N C. Processes of seamount subduction in the Mariana and Izu-Bonin trenches[J]. Marine Geology, 1985, 64(1-2): 77-90. doi: 10.1016/0025-3227(85)90161-6
    [63]
    Fryer P, Becker N, Appelgate B, et al. Why is the challenger deep so deep?[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 259-269. doi: 10.1016/S0012-821X(03)00202-4
    [64]
    Chen P F, Chen K X, Cheng H Y. Frequent excitations of T waves by earthquakes in the South Mariana Arc[J]. Journal of Asian Earth Sciences, 2015, 98: 50-60. doi: 10.1016/j.jseaes.2014.10.033
    [65]
    Gripp A E, Gordon R G. Young tracks of hotspots and current plate velocities[J]. Geophysical Journal International, 2002, 150(2): 321-361. doi: 10.1046/j.1365-246X.2002.01627.x
    [66]
    Peacock S M, Wang K L. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan[J]. Science, 1999, 286(5441): 937-939. doi: 10.1126/science.286.5441.937
    [67]
    Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 107-138. doi: 10.1146/annurev-earth-060115-012211
  • Cited by

    Periodical cited type(2)

    1. Chenglong Xia,Yanpeng Zheng,Baohua Liu,Qingfeng Hua,Long Ma,Xianfeng Li,Qiuhong Xie. Tectonic implications of the subduction of the Kyushu-Palau Ridge beneath the Kyushu, southwest Japan. Acta Oceanologica Sinica. 2021(03): 70-83 .
    2. 丁巍伟,李家彪. 九州-帕劳海脊南段的深部结构探测及对板块俯冲起始机制的可能启示. 海洋地质与第四纪地质. 2019(05): 98-103 . 本站查看

    Other cited types(9)

Catalog

    Article views (2724) PDF downloads (77) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return