YANG Baoju, WU Yonghua, LIU Jihua, LIU Yanguang, ZHANG Hui, WANG Xiaojing, LI Li. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37. DOI: 10.16562/j.cnki.0256-1492.2018.02.003
Citation: YANG Baoju, WU Yonghua, LIU Jihua, LIU Yanguang, ZHANG Hui, WANG Xiaojing, LI Li. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37. DOI: 10.16562/j.cnki.0256-1492.2018.02.003

Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity

More Information
  • Received Date: April 09, 2017
  • Revised Date: June 26, 2017
  • Surface samples taken from both the northern Okinawa Trough (NOT) and the South Okinawa Trough (SOT) proximal to the hydrothermal fields of Tangyin and Yonaguni Knoll IV are analyzed for major, trace and rare earth elements. Results show that the element composition of surface sediments in the NOT is quite different from that in the SOT. Except for Ca, Sr, and Na, most samples from the NOT are low in trace elements and rare earth elements (REE), possibly owing to the deposition of calcareous components and volcanic materials with low contents of REE. The North American Shale Composition normalized REE have a relatively flat pattern, and characterized by light rare earth elements (LREE) enrichment, heavy rare earth elements (HREE) depletion, weak Ce and Eu anomaly. REE composition indicates that terrigenous materials of surface sediments in the NOT are mainly derived from the Yellow River and Taiwan rivers. In the SOT, however, the contents of Si, Fe, Ba, Cu, Pb, Zn and REE in the surface sediments are relatively high, and the fractionation between LREE and HREE is weak while the HREE contents increase. As influenced by hydrothermal activity, a certain amount of pyrite, pyrrhotite, barite and Fe-Mn oxides are mixed into the sediments which causes the increase in Fe and some trace elements. The REE patterns are similar to the hydrothermal fluid with a positive Eu anomaly. The Fe-Mn oxides have the capability to scavenge REE from hydrothermal fluids and surrounding seawater, which can promote the decrease in negative Ce anomaly and increase in ∑REE contents. In addition, there is a certain amount of excess Si in the sediments derived from hydrothermal activity. The REE patterns and (La/Sm)N-(Gd/Yb)N ratio indicate that terrigenous materials of surface sediments in the SOT are mainly derived from Taiwan.
  • [1]
    Iseki K, Okamura K, Kiyomoto Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 457-473. doi: 10.1016/S0967-0645(02)00468-X
    [2]
    Oguri K, Matsumoto E, Yamada M, et al. Sediment accumulation rates and budgets of depositing particles of the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 513-528. doi: 10.1016/S0967-0645(02)00465-4
    [3]
    Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002
    [4]
    Fukuzawa H, Nakamura T, Okamura M, et al. AMS 14C dating of varved sediments from lake Suigetsu, central japan and atmospheric 14c change during the late pleistocene[J]. Radiocarbon, 1995, 37(2): 371-378. doi: 10.1017/S0033822200030848
    [5]
    Kawagucci S, Chiba H, Ishibashi J, et al. Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems[J]. Geochemical Journal, 2011, 45(2): 109-124. doi: 10.2343/geochemj.1.0105
    [6]
    Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview[J]. Ore Geology Reviews, 2003, 23(3-4): 299-339. doi: 10.1016/j.oregeorev.2003.07.001
    [7]
    Halbach P, Hansmann W, K?ppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough[J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073
    [8]
    Zeng Z G, Yu S X, Yin X B, et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China Series D: Earth Sciences, 2009, 52(7): 913-924. doi: 10.1007/s11430-009-0107-y
    [9]
    Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1
    [10]
    Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113. doi: 10.1016/0016-7037(94)90297-6
    [11]
    Hongo Y, Obata H, Gamo T, et al. Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1
    [12]
    Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-197. doi: 10.1016/j.oregeorev.2016.09.015
    [13]
    Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J, Okino K, Sunamura M, eds. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 337-359.
    [14]
    杨耀民, 叶俊, 石学法, 等.海底含金属沉积物矿物学和地球化学及其对热液活动的指示[J].中南大学学报:自然科学版, 2011, 42(S2): 65-74.

    YANG Yaomin, YE Jun, SHI Xuefa, et al. Mineralogy and geochemistry of submarine metalliferous sediments and significances for hydrothermal activity[J]. Journal of Central South University: Science and Technology, 2011, 42(S2): 65-74.
    [15]
    German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean[J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0
    [16]
    赵一阳, 翟世奎, 李永植, 等.冲绳海槽中部热水活动的新记录[J].科学通报, 1996, 41(14): 1307-1310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199614016

    ZHAO Yiyang, ZHAI Shikui, LI Yongzhi, et al.. New records of submarine hydrothermal activity in middle part of the Okinawa Trough[J]. Chinese Science Bulletin, 1997, 42(7): 574-577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199614016
    [17]
    翟世奎, 于增慧, 杜同军.冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J].海洋学报, 2007, 29(1): 58-65. doi: 10.3321/j.issn:0253-4193.2007.01.008

    ZHAI Shikui, YU Zhenghui, DU Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Acta Oceanologica Sinica, 2007, 29(1): 58-65. doi: 10.3321/j.issn:0253-4193.2007.01.008
    [18]
    Marumo K, Hattori K H. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotope characteristics[J]. Geochimica et Cosmochimica Acta, 1999, 63(18): 2785-2804. doi: 10.1016/S0016-7037(99)00158-1
    [19]
    金翔龙, 喻普之.冲绳海槽的构造特征与演化[J].中国科学: B辑, 1987(2): 86-93. http://d.old.wanfangdata.com.cn/Conference/5615163

    JIN Xianglong, YU Puzhi. Structure and tectonic evolution of Okinawa Trough[J]. Science in China: Series B, 1987(2): 86-93. http://d.old.wanfangdata.com.cn/Conference/5615163
    [20]
    李铁刚, 常凤鸣.冲绳海槽古海洋学[M].北京:海洋出版社, 2009: 1-259.

    LI Tiegang, CHANG Fengming. Paleoceanography in the Okinawa Trough[M]. Beijing: China Ocean Press, 2009: 1-259.
    [21]
    Hsu S C, Lin F J, Jeng W L, et al. Observed sediment fluxes in the southwesternmost Okinawa Trough enhanced by episodic events: flood runoff from Taiwan rivers and large earthquakes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(7): 979-997. doi: 10.1016/j.dsr.2004.01.009
    [22]
    杨守业, 李从先.长江与黄河沉积物REE地球化学及示踪作用[J].地球化学, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008

    YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments[J]. Geochimica, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008
    [23]
    Haskin L A, Haskin M A, Frey F A, et al. Relative and Absolute Terrestrial Abundances of the Rare Earths[C]// Ahrens L H, ed. Origin and Distribution of the Elements. London: Elsevier Ltd, 1968: 889-912.
    [24]
    Nozaki Y. Rare earth elements and their isotopes in the ocean[M]//Steele J H, ed. Encyclopedia of Ocean Sciences. Oxford: Elsevier, 2001, 4: 2354-2366.
    [25]
    赵一阳, 何丽娟, 张秀莲, 等.冲绳海槽沉积物地球化学的基本特征[J].海洋与湖沼, 1984, 15(4): 371-379.

    ZHAO Yiyang, HE Lijuan, ZHANG Xiulian, et al. Basic characteristics of geochemistry of sediments in Okinawa trough[J]. Oceanologia et Limnologia Sinica, 1984, 15(4): 371-379.
    [26]
    黄牧.太平洋深海沉积物稀土元素地球化学特征及资源潜力初步研究[D].硕士学位论文国家海洋局第一海洋研究所, 2013: 21-25.

    HUANG Mu. Geochemical Characteristics of Rare Earth Elements in Pacific deep-sea sediments and preliminary study on the resource potential[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2013: 21-25.
    [27]
    翟世奎, 张杰, 何良彪, 等.冲绳海槽北部现代沉积物地球化学研究[J].沉积学报, 1997, 15(S1): 8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701047219

    ZHAI Shikui, ZHANG Jie, HE Liangbiao, et al. Study on geochemistry of seafloor surface sediments in the north Okinawa trough[J]. Acta Sedimentologica Sinica, 1997, 15(S1): 8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701047219
    [28]
    蒋富清, 李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J].沉积学报, 2002, 20(4): 680-686. doi: 10.3969/j.issn.1000-0550.2002.04.024

    JIANG Fuqing, LI Anchun. Geochemical characteristics and their implications to provenance and environment of surface sediments from the south Okinawa trough[J]. Acta Sedimentologica Sinica, 2002, 20(4): 680-686. doi: 10.3969/j.issn.1000-0550.2002.04.024
    [29]
    赵一阳, 鄢明才.中国浅海沉积物化学元素丰度[J].中国科学: B辑, 1993, 23(10): 1084-1090.

    ZHAO Yiyang, YAN Mingcai. Chemical element abundance of sediments in the China Shelf Sea[J]. Science in China: Series B, 1993, 23(10): 1084-1090.
    [30]
    蒋富清, 李安春, 李铁刚.冲绳海槽南部柱状沉积物地球化学特征及其古环境意义[J].海洋地质与第四纪地质, 2002, 22(3): 1-17. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200203002

    JIANG Fuqing, LI Anchun, LI Tiegang. Geochemical characteristics for core sediments of the southern Okinawa trough and their paleoenvironment implication[J]. Marine Geology & Quaternary Geology, 2002, 22(3): 1-17. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200203002
    [31]
    赵一阳, 鄢明才.冲绳海槽海底沉积物汞异常──现代海底热水效应的"指示剂"[J].地球化学, 1994, 23(2): 132-139. doi: 10.3321/j.issn:0379-1726.1994.02.008

    ZHAO Yiyang, YAN Mingcai. Mercury anomaly in sediment of the okinawa trough-an indicator of hydrothermal effect on modern sea floor[J]. Geochimica, 1994, 23(2): 132-139. doi: 10.3321/j.issn:0379-1726.1994.02.008
    [32]
    Bonatti E. Metallogenesis at oceanic spreading centers[J]. Earth and Planetary Sciences, 1975, 3(3): 401-431.
    [33]
    Bostr?m K Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4
    [34]
    Dekov V M, Cuadros J, Kamenov G D, et al. Metalliferous sediments from the H. M. S. Challenger voyage (1872-1876)[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5019-5038. doi: 10.1016/j.gca.2010.06.001
    [35]
    Murray R W, Brink M R B, Brumsack H J, et al. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce: results from ODP Leg 127[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2453-2466. doi: 10.1016/0016-7037(91)90365-C
    [36]
    王中刚, 于学元, 赵振华, 等.稀土元素地球化学[M].北京:科学出版社, 1989.

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua, et al. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989.
    [37]
    Chen J C, Lo C Y, Lee Y T, et al. Mineralogy and chemistry of cored sediments from active margin off southwestern Taiwan[J]. Geochemical Journal, 2007, 41(5): 303-321. doi: 10.2343/geochemj.41.303
    [38]
    Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7
    [39]
    Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 757-762. doi: 10.1016/0016-7037(89)90019-7
    [40]
    Ruhlin D E, Owen R M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: Examination of a seawater scavenging mechanism[J]. Geochimica Et Cosmochimica Acta, 1986, 50(3): 393-400. doi: 10.1016/0016-7037(86)90192-4
    [41]
    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth & Planetary Science Letters, 1984, 67(1): 70-78. doi: 10.1016-0012-821X(84)90039-6/
    [42]
    Moffett J W. Microbially mediated cerium oxidation in sea water[J]. Nature, 1990, 345(6274): 421-423. doi: 10.1038/345421a0
    [43]
    Tachikawa K, Jeandel C, Vangriesheim A, et al. Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(5): 733-755. doi: 10.1016/S0967-0637(98)00089-2
    [44]
    Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579. doi: 10.1016/0016-7037(94)90559-2
    [45]
    Carlo E H D, Wen X Y, Irving M. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles[J]. Aquatic Geochemistry, 1997, 3(4): 357-389. doi: 10.1023/A:1009664626181
    [46]
    Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3
    [47]
    Piper D Z. Rare earth elements in the sedimentary cycle: A summary[J]. Chemical Geology, 1974, 14(4): 285-304. doi: 10.1016/0009-2541(74)90066-7
    [48]
    于增慧, 高玉花, 翟世奎, 等.冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J].中国科学:地球科学, 2012, 42(3): 369-379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201203006

    YU Zhenghui, GAO Yuhua, ZHAI Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough[J]. Science China: Earth Science, 2012, 55(4): 665-674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201203006
  • Related Articles

    [1]HUANG Xin, LI Longwei, WANG Wenzhuo, WANG Yuhao, CHEN Shuai, KANG Yurou. The composition and source of hydrocarbons in the hydrothermal products of Tangyin and Yonaguni Knoll IV hydrothermal fields from the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 181-189. DOI: 10.16562/j.cnki.0256-1492.2023091401
    [2]YE Fanfan, ZENG Zhigang. States of element occurrence of sediments in the southern Okinawa Trough and its hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 160-172. DOI: 10.16562/j.cnki.0256-1492.2023022701
    [3]ZOU Liang, DOU Yanguang, CHEN Xiaohui, HU Bangqi, LIN Xi. Provenance analysis for surface sediments in different depositional environments of the middle-south Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 115-124. DOI: 10.16562/j.cnki.0256-1492.2020082001
    [4]WU Nengyou, SUN Zhilei, LU Jianguo, CAI Feng, CAO Hong, GENG Wei, LUO Min, ZHANG Xilin, LI Qing, SHANG Luning, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin, LI Xin, GONG Jianming, HU Yu, LIN Genmei. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. DOI: 10.16562/j.cnki.0256-1492.2019070102
    [5]Luning SHANG, Lei CHEN, Xunhua ZHANG, Zhigang ZENG, Yong ZHANG, Di LUO. Topographic features of the hydrothermal field and their genetic mechanisms in southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 12-22. DOI: 10.16562/j.cnki.0256-1492.2017112301
    [6]HU Siyi, ZENG Zhigang, YIN Xuebo, ZHU Bowen, FANG Xue, QI Haiyan. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. DOI: 10.16562/j.cnki.0256-1492.2017082301
    [7]ZHANG Yuxiang, ZENG Zhigang, YIN Xuebo, LI He, QI Haiyan, WANG Xiaoyuan, CHEN Shuai. Geochemical records of hydrothermal activities in the sediment fillings within pumice's vesicles in the vicinity of a seafloor hydrothermal field in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 102-111. DOI: 10.16562/j.cnki.0256-1492.2018.05.010
    [8]ZHU Aimei, SHI Xuefa, ZOU Jianjun, WU Yonghua, ZHANG Hui, BAI Yazhi. SEDIMENT PROVENANCE AND FLUXES IN THE NORTHERN OKINAWA TROUGH DURING THE LAST 88 KA[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 1-8. DOI: 10.16562/j.cnki.0256-1492.2015.05.001
    [9]ZENG Zhi-gang, CHEN Li-rong. PRELIMINARY STUDY ON VOLCANIC CRATER IN THE MIDDLE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 31-34.
    [10]LUAN Xi-wu. RELATIONSHIP BETWEEN THE NUMBER OF HYDROTHERMAL ACTIVITY FIELDS AND SPREADING RATE AND ITS APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 55-64.

Catalog

    Article views (3405) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return