ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82. DOI: 10.16562/j.cnki.0256-1492.2018.04.006
Citation: ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82. DOI: 10.16562/j.cnki.0256-1492.2018.04.006

Origin and tectonic setting of metamorphic rocks in the Yap Island Arc

More Information
  • Received Date: July 24, 2017
  • Revised Date: November 29, 2017
  • The Yap Island Arc consists largely of metamorphic rocks and thus differs significantly from the most of island arcs of the western Pacific.It is crucial to study the origin and process of the metamorphic rocks in the Yap arc for delineating the tectinic setting of the Yap arc-trench system.In this study, the metamorphic rocks in the Yap arc were analyzed using an electron microprobe (EMP) to reasearch temperature-pressure conditions of the amphibolite rocks.Results of mineral assemblages in metamorphic rocks of Yap arc show that metamorphic facies of Yap metamorphic rocks are greenschist and amphibolite.Temperature-pressure conditions of the Yap amphibolite rocks were calculated by the thermobarometry and barometer on the basis of compositions of mineral pairs.The temperature-pressure results are 493.6~630℃/3.8~6kbar, and the facies series of which belongs to medium P/T series.The medium P/T series is the characteristic of common orogenic belts.Considering the results of mineral assemblages and temperature-pressure conditions, we concluded that the metamorphic rocks in the Yap arc were formed in the setting of a volcanic arcs.Metamorphic rocks in the Yap arc represent the metamorphic basements of Yap arc.The Yap amphibolite rocks were buried in the depth of 15~20 km and the exposure of metamorphic rocks is resulted from subduction erosion of the Caroline plate.Caroline Ridges and seamounts enhanced subduction erosion.The Yap arc basements underwent regional metamorphism, then the uplifted section of volcanic arc were eroded bythe subduction erotion.Eventually the metamorphic basements of Yap arc croped out the earth surface.
  • [1]
    Leat P T, Larter R.Intra-oceanic subduction systems:introduction[J].Geological Society, London, Special Publications, 2003, 219 (1) :1-17. doi: 10.1144/GSL.SP.2003.219.01.01
    [2]
    Stern R J, Smoot N C, Rubin M.Unzipping of the volcano arc, Japan[J].Tectonophysics, 1984, 102 (1-4) :153-174. doi: 10.1016/0040-1951(84)90012-X
    [3]
    Matsuda J-Ⅰ, Zashu S, Ozima M.Sr isotopic studies of volcanic rocks from island arcs in the western pacific[J].Tectonophysics, 1977, 37 (1-3) :141-151. doi: 10.1016/0040-1951(77)90044-0
    [4]
    Ohara Y.Peridotites and volcanics from the Yap arc system:implications for tectonics of the southern Philippine Sea Plate[J].Chemical Geology, 2002, 189 (1) :35-53. https://www.sciencedirect.com/science/article/abs/pii/S0009254102000621
    [5]
    Shiraki K.Metamorphic basement rocks of Yap Islands, Western Pacific:possible oceanic crust beneath an island arc[J].Earth and Planetary Science Letters, 1971, 13 (1) :167-174. doi: 10.1016/0012-821X(71)90120-8
    [6]
    Hawkins J and Batiza R.Metamorphic rocks of the Yap arctrench system[J].Earth and Planetary Science Letters, 1977, 37 (2) :216-229. doi: 10.1016/0012-821X(77)90166-2
    [7]
    Kobayashi K.Origin of the Palau and Yap trench-arc systems[J].Geophysical Journal International, 2004, 157 (3) :1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x
    [8]
    Sato T, Matsu'ura M.A kinematic model for evolution of island arc-trench systems[J].Geophysical Journal International, 1993, 114 (3) :512-530. doi: 10.1111/j.1365-246X.1993.tb06984.x
    [9]
    Kim Y-M, Lee S-M, Okino K.Comparison of gravity anomaly between mature and immature intra-oceanic subduction zones in the western Pacific[J].Tectonophysics, 2009, 474 (3-4) :657-673. doi: 10.1016/j.tecto.2009.05.004
    [10]
    Fujiwara T, Tamura C, Nishizawa A, et al.Morphology and tectonics of the Yap Trench[J].Marine Geophysical Researches, 2000, 21 (1) :69-86. doi: 10.1023/A%3A1004781927661
    [11]
    张正一, 董冬冬, 张广旭, 等.板块俯冲侵蚀雅浦岛弧的地形制约[J].海洋地质与第四纪地质, 2017, 37 (1) :41-50. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201701006.htm

    ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, et al.Topgraphic constraints on the subduction erosion of the Yap arc, west Pacific[J].Marine Geology and Quaternary Geology, 2017, 37 (1) :41-50. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201701006.htm
    [12]
    Shiraki K, Kuroda N, Maruyama S, et al.Evolution of the tertiary volcanic rocks in the Izu-Mariana arc[J].Bulletin Volcanologique, 1978, 41 (4) :548-562. doi: 10.1007/BF02597386
    [13]
    Beccaluva L, Macciotta G, Savelli C, et al.Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela basin) [J].1980, 23: 247-268.
    [14]
    CrawfordA J, Beccaluva L, Serri G, et al.Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches[J].Earth and Planetary Science Letters, 1986, 80 (3) :265-280. doi: 10.1029/GM023p0247
    [15]
    McCabe R, Uyeda S.Hypothetical model for the bending of the Mariana Arc[C]//The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2.1983: 281-293. doi: 10.1029/GM027p0281
    [16]
    Pearce J A, Reagan M K, Petronotis K, et al.Izu-Bonin-Mariana fore arc:Testing subduction initiation and ophiolite models by drilling the outer Izu-Bonin-Mariana fore arc; 30 July-29 September 2014[J].Integrated Ocean Drilling Program:Preliminary Reports, 2015:352.
    [17]
    Lapierre H, Taylor R N, Rouer O, et al.Mineral Chemistry of Forearc Volcanic Rocks From the Izu-Bonin Arc, Holes 792 Eand 793 B1[J].1992, 126: 431-447.
    [18]
    Stern R J, Fouch M J, Klemperer S L.An Overview of the Izu-Bonin-Mariana Subduction Factory[C]//Inside the Subduction Factory.American Geophysical Union, 2013: 175-222.
    [19]
    Bracey D R.Reconnaissance Geophysical Survey of the Caroline Basin[J].Geological Society of America Bulletin, 1975, 86 (6) :775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
    [20]
    Weissel J K, Anderson R N.Is there a Caroline plate?[J].Earth and Planetary Science Letters, 1978, 41 (2) :143-158. doi: 10.1016/0012-821X(78)90004-3
    [21]
    Sato T, Kasahara J, Katao H, et al.Seismic observations at the Yap Islands and the northern Yap Trench[J].Tectonophysics, 1997, 271 (3-4) :285-294. doi: 10.1016/S0040-1951(96)00251-X
    [22]
    Seno T, Stein S, Gripp A E.A model for the motion of the Philippine Sea plate consistent with NUVEL-1and geological data[J].Journal of Geophysical Research:Solid Earth, 1993, 98 (B10) :17941-17948. doi: 10.1029/93JB00782
    [23]
    Ryan W B F, Carbotte S M, Coplan J O, et al.Global MultiResolution Topography synthesis[J].Geochemistry, Geophysics, Geosystems, 2009, 10, Q03014, doi: 10.1029/2008GC002332
    [24]
    Lai Z, Zhao G, Han Z, et al.The magma plumbing system in the Mariana Trough back-arc basin at 18°N[J].Journal of Marine Systems, 2018, 180:132-139. doi: 10.1016/j.jmarsys.2016.11.008
    [25]
    Gerya T, Perchuk L, Triboulet C, et al.Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan[J].Petrology, 1997, 5 (6) :503-533.
    [26]
    Zenk M, Schulz B.Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland[J].Mineralogical Magazine, 2004, 68 (5) :769. doi: 10.1180/0026461046850218
    [27]
    Holland T and Blundy J.Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J].Contributions to Mineralogy and Petrology, 1994, 116 (4) :433-447. doi: 10.1007/BF00310910
    [28]
    Molina J, Moreno J, Castro A, et al.Calcic amphibole thermobarometry in metamorphic and igneous rocks:New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning[J].Lithos, 2015, 232:286-305. doi: 10.1016/j.lithos.2015.06.027
    [29]
    Leake B E, Woolley A R, Birch W D, et al.Nomenclature of amphiboles:additions and revisions to the International Mineralogical Association's amphibole nomenclature[J].Mineralogical Magazine, 2004, 68 (1) :209-215. doi: 10.1180/0026461046810182
    [30]
    Leake B E, Woolley A R, Arps C E, et al.Report.Nomenclature of amphiboles:report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J].Mineralogical Magazine, 1997, 61 (2) :295-321. doi: 10.1180-minmag.1997.061.405.13/
    [31]
    Droop G.A general equation for estimating Fe3+concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria[J].Mineralogical Magazine, 1987, 51 (361) :431-435. doi: 10.1180/minmag.1987.051.361.10
    [32]
    Lepage L D.ILMAT:an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry[J].Computers & Geosciences, 2003, 29 (5) :673-678. https://www.sciencedirect.com/science/article/pii/S0098300403000426
    [33]
    Zenk M, Schulz B.Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland[J].Mineralogical Magazine, 2004, 68 (5) :769-786. doi: 10.1180/0026461046850218
    [34]
    Earle S.Physical Geology[M].USA:Create Space Independent Publishing Platform, 2016:171-174.
    [35]
    Brown M.P-T-t evolution of orogenic belts and the causes of regional metamorphism[J].Journal of the Geological Society, 1993, 150 (2) :227-241. doi: 10.1144/gsjgs.150.2.0227
    [36]
    Peacock S M.Thermal and Petrologic Structure of Subduction Zones[C]//Subduction top to bottom.American Geophysical Union, 1996: 119-133.
    [37]
    Rondenay S, Abers G A, van Keken P E.Seismic imaging of subduction zone metamorphism[J].Geology, 2008, 36 (4) :275-278. doi: 10.1130/G24112A.1
    [38]
    Wei C and Zhang Y.Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma[J].Chinese Science Bulletin, 2008, 53 (23) :3603-3614. doi: 10.1007/s11434-008-0405-3
    [39]
    Cloos M.Lithospheric buoyancy and collisional orogenesis:Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J].Geological Society of America Bulletin, 1993, 105 (6) :715-737. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
    [40]
    Winter John D.Principles of Igneous and Metamorphic Petrology[M].USA:Pearson, 2010:563-565.
    [41]
    Zheng Y, Chen R, Xu Z, et al.The transport of water in subduction zones[J].Science China Earth Sciences, 2016, 59 (4) :651-682. doi: 10.1007/s11430-015-5258-4
    [42]
    Clift P, Vannucchi P.Controls on tectonic accretion versus erosion in subduction zones:Implications for the origin and recycling of the continental crust[J].Reviews of Geophysics, 2004, 42, RG2001, .doi: 10.1029/2003RG000127.
    [43]
    von Huene R, Ranero C R, Vannucchi P.Generic model of subduction erosion[J].Geology, 2004, 32 (10) :913-916. doi: 10.1130/G20563.1
    [44]
    Kopp H, Flueh E R, Petersen C J, et al.The Java margin revisited:Evidence for subduction erosion off Java[J].Earth and Planetary Science Letters, 2006, 242 (1) :130-142. http://core.ac.uk/display/11892474
    [45]
    Kukowski N, Oncken O.Subduction Erosion—the"Normal"Mode of Fore-Arc Material Transfer along the Chilean Margin?[C]//The Andes: Active Subduction Orogeny.Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 217-236. doi: 10.1007%2F978-3-540-48684-8_10
    [46]
    Stern C R.Subduction erosion:Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle[J].Gondwana Research, 2011, 20 (2-3) :284-308. doi: 10.1016/j.gr.2011.03.006
    [47]
    Johnson L, Fryer P.Oceanic plate material on the Mariana forearc[J].Eos, 1988, 69:1471.
    [48]
    Bloomer S H.Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench:Implications for its structure and evolution[J].Journal of Geophysical Research:Solid Earth, 1983, 88 (B9) :7411-7428. doi: 10.1029/JB088iB09p07411
    [49]
    Hilde T W C.Sediment subduction versus accretion around the pacific[J].Tectonophysics, 1983, 99 (2-4) :381-397. doi: 10.1016/0040-1951(83)90114-2
    [50]
    Lallemand S E, Schnürle P, Malavieille J.Coulomb theory applied to accretionary and nonaccretionary wedges:Possible causes for tectonic erosion and/or frontal accretion[J].Journal of Geophysical Research:Solid Earth, 1994, 99 (B6) :12033-12055. doi: 10.1029/94JB00124
    [51]
    Loveless J P, Pritchard M E, Kukowski N.Testing mechanisms of subduction zone segmentation and seismogenesis with slip distributions from recent Andean earthquakes[J].Tectonophysics, 2010, 495 (1-2) :15-33. doi: 10.1016/j.tecto.2009.05.008
    [52]
    Keating B H, Mattey D P, Helsley C E, et al.Evidence for a hot spot origin of the Caroline Islands[J].Journal of Geophysical Research:Solid Earth, 1984, 89 (B12) :9937-9948. doi: 10.1029/JB089iB12p09937
  • Related Articles

    [1]DAI Xinnan, JIA Yonggang, ZHANG Shaotong, ZHANG Shuyu, ZHANG Haoqing, SHAN Hongxian. Influence of salinity on sediment erosion-resistance: evidence from annular flume studies[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 222-230. DOI: 10.16562/j.cnki.0256-1492.2019032401
    [2]GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801
    [3]XU Min, DI Huizhe, ZHOU Zhiyuan, LI Haiyong, LIN Jian. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 58-70. DOI: 10.16562/j.cnki.0256-1492.2019063001
    [4]KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005
    [5]ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, ZHANG Guoliang. TOPOGRAPHIC CONSTRAINTS ON THE SUBDUCTION EROSION OF THE YAP ARC, WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 41-50. DOI: 10.16562/j.cnki.0256-1492.2017.01.005
    [6]ZHANG Yunji, GONG Lixin, JIN Bingfu, DONG Zhicheng. PRELIMINARY ESTIMATE OF SOIL EROSION MODULUS IN THE DAGUHE RIVER BASIN USING 137CS TRACING METHOD[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 165-172. DOI: 10.3724/SP.J.1140.2013.06165
    [7]LI Guangxue, GONG Lixin, YANG Jichao, DING Dong, LI Bin, CAO Lihua, WANG Yonghong, LIU Ling. BEACH EROSION ALONG THE COAST OF SHANDONG PROVINCE AND PROTECTION COUNTERMEASURES[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 35-45. DOI: 10.3724/SP.J.1140.2013.05035
    [8]HU Gang, LIU Jian, SHI Lianqiang, WU Xiaoyong. COASTAL EROSION OF THE YANGTZE ESTUARY[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 9-15. DOI: 10.3724/SP.J.1140.2009.06009
    [9]ZENG Hai-ao, WU Jing-lu, LIN Lin. USING 137Cs TRACER TECHNIQUE TO INVESTIGATE SOIL EROSION DISTRIBUTION AND TOTAL EROSION AMOUNT IN TAIHU LAKE CATCHMENT[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 79-85.
    [10]HU Gang, SHEN Huan-ting, ZHUANG Ke-lin, ZHOU Liang-yong, LIU Jian. EVOLUTION PATTERN OF COASTAL EROSION IN THE YANGTZE RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 13-21.
  • Cited by

    Periodical cited type(3)

    1. 鄢全树,袁龙,闫施帅,刘振轩,吴增,石学法. 菲律宾海板块东南边界地质过程与研究展望. 海洋地质与第四纪地质. 2023(05): 50-63 . 本站查看
    2. 闫施帅,鄢全树,袁龙,刘焱光,杨刚. 索罗尔海槽俯冲前缘基底的岩石学和矿物学研究. 海洋科学进展. 2021(04): 519-534 .
    3. 张臻,李三忠. 雅浦沟-弧体系构造演化过程. 海洋地质与第四纪地质. 2019(05): 138-146 . 本站查看

    Other cited types(7)

Catalog

    Article views (1958) PDF downloads (22) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return