APPLICATION OF ABYSSAL BENTHIC BARITE TO PALEOCEANOGRAPHIC STUDIES
-
摘要: 深海沉积成因重晶石作为重要的古海洋环境指示物,被广泛应用于新生代海洋化学和古生产力的重建,成为全球变化研究的重要分析对象之一。近年来,在重构古海洋生产力和古海水锶含量、锶同位素组成等方面的研究中取得了显著的进展。从目前该领域的研究实践来看,利用深海沉积重晶石进行古海洋研究还需要针对性地解决两方面问题:①形成重晶石沉淀的海洋微环境的时空分布及其物理化学条件;②深海沉积重晶石的采样、筛选和分析方法。上述问题是当前研究的难点,也是制约重晶石广泛用于古海洋研究的基本问题。Abstract: Abyssal benthic barite, as a reliable proxy of paleoclimate, is widely used for reconstruction of Cenozoic marine chemistry properties and paleoproductivity. In recent years, some notable progress has been made in the reconstruction of paleoproductivity, strontium concentration and isotopic composition of ancient seawater. In the views of new approaches in this topic, two crucial problems are proposed to be emphasized on future researches:①the spatial-temporal distribution and physiochemical properties of the microenvironment where the marine barite precipitated is not fully verified; ②sampling and chemical analysis methods need to be improved. Both aspects are also the constraints for the application of barite to the paleoceanographic researches in the future.
-
Keywords:
- barite /
- microenvironment /
- strontium /
- paleoceanography
-
-
[1] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410. [CHEN Jian-fang. New geochemical proxies in paleoceanography studies[J]. Advance in Earth Science, 2002, 17(3):402-410.]
[2] Gideon M H. New oceanic proxies for paleoclimate[J]. Earth and Planetary Science Letters, 2002, 203:1-13.
[3] 蓝先洪. 地球化学记录在古温度定量恢复研究中的应用[J]. 海洋地质动态, 2003, 19(2):9-13. [LAN Xian-hong. The application of geochemical records in quantitative recovery of paleotemperature[J]. Marine Geology Letters, 2003, 19(2):9-13.]
[4] Capo R C, Depaolo D J. Seawater strontium isotopic variations from 2.5 million years ago to the present[J]. Science, 1990, 249(4964):51-55.
[5] Beck J W, Edwards R L, Ito E, et al. Sea-surface temperature from coral skeletal strontium/calcium ration[J]. Science, 1992, 257:644-647.
[6] Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments[J]. Paleoceanography, 1994, 9:151-168.
[7] Averyt K B, Paytan A. Empirical partition coefficients for Sr and Ca in marine barite:Implication for reconstructing seawater Sr and Ca concentrations[J]. Geochem. Geophys. Geosyst., 2003, 4(5):1043, doi: 10.1029/2002GC000426.
[8] Baker P A, Gieskes J M, Elderfield H. Diagenesis of carbonates in deep-sea sediments-evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data[J]. J. sedim. Petrol., 1982, 52:71-82.
[9] Gieskes J M, Elderfield H, Palmer M R. Strontium and its isotopic composition in composition in interstitial waters of marine carbonate sediments[J]. Earth Planet. Sci. Lett., 1986, 77:229-235.
[10] Paytan A, Kastner M, Martin E, et al. Marine barite as a monitor of seawater strontium isotope composition[J]. Nature, 1993, 366:445-449.
[11] Paytan A, Moore W S, Kastner M. Sedimentation rate as determined by 226Ra activity in marine barite[J]. Geochim. Cosmochim. Acta, 1996a, 60:4313-4319.
[12] Dymond J, Collier R. Particulate barium fluxes and their relationships to biological productivity[J]. Deep-sea Research 2, 1996, 43(4-6):1283-1308.
[13] McManus J. Geochemistry of barium in marine sediments:Implications for its use as a paleoproxy[J]. Geochim. Cosmochim. Acta, 1998, 62:3453-3473.
[14] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7:163-181.
[15] 倪建宇, 姚旭莹. 古海洋生产力的研究方法[J]. 海洋地质动态, 2004, 20(3):30-39. [NI Jian-yu, YAO Xu-ying. The research method of paleoproductivity[J]. Marine Geology Letters, 2004, 20(3):30-39.]
[16] Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea:implications for paleoproductivity reconstruction[J]. Global Biogeochemical Cycles, 1995, 9(2):289-303.
[17] Martin E E, Macdougall J D, Herbert T D, et al. Strontium and neodymium isotopic analyses of marine barite separates[J]. Geochim. Cosmochim. Acta, 1995, 59(7):1353-1361.
[18] Monnin C, Jeandel C, Cattaldo T, et al. The marine barite saturation state of the world's oceans[J]. Mar. Chem., 1999, 65:253-261.
[19] Ganeshram R S, Francois R, Commeau J, et al. An experimental investigation of barite formation in seawater[J]. Geochimica et Cosmochimica Acta, 2003,67(14):2599-2605.
[20] Chow T J, Goldberg E D. On the marine geochemistry of barium[J]. Geochim. Cosmochim. Acta, 1960, 20:192-198.
[21] Hanor J S. Barite saturation in seawater[J]. Geochim. Cosmochim Acta, 1969, 33:894-898.
[22] Bernstein R E, Byrne R H, Betzer P R, et al. Morphologies and transformations of celestite in seawater:the role of acantharians in strontium and barium geochemistry[J]. Geochim. Cosmochim. Acta, 1992, 56:3273-3279.
[23] Bernstein R E, Byrne R H, Schijf J. Acantharians:a missing link in the oceanic biogeochemistry of barium[J]. Deep-Sea Res., 1998, 45:491-505.
[24] Bernstein R E, Byrne R H. Acantharians and marine barite[J]. Marine Chemistry, 2004, 86:45-50.
[25] Dehairs F, Chesselet R, Jedwab J. Discrete suspended particles of barite and the barium cycle in the open ocean[J]. Earth Planet. Sci. Lett., 1980, 49:528-550.
[26] Bishop J K B. The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988, 331:341-343.
[27] Paytan A, Kastner M. Benthic Ba fluxes in the central Equatorial Pacific:implications for the oceanic Ba cycle[J]. Earth & Planetary Science Letters, 1996, 142:439-450.
[28] Nurnberg C C, Bohrmann G, Schulter M. Barium accumulation in the Atlantic sector of the Southern Ocean:results from 190000 year records[J]. Paleoceanography, 1997, 12(4):549-603.
[29] Sarnthein M, Winn K, Duplessy J C, et al. Global variations of surface ocean productivity in low and mid latitudes:influence on CO2 reserviors of the deep ocean and atmosphere during the last 21000 years[J]. Paleoceanography, 1988, 3(3):361-399.
[30] 黄思静, 吴素娟, 孙治雷, 等. 中新生代海水锶同位素演化和古海洋事件[J]. 地学前缘, 2005, 12(2):133-141. [HUANG Si-jing, WU Su-juan,SUN Zhi-lei, et al. Seawater strontium isotopes and paleo-oceanic events over the past 260 Ma[J]. Earth Science Frontiers, 2005, 12(2):133-141.]
[31] Church T M. Marine barite[M]//Marine Minerals Mineral Soc. Amer., 1979, 6:175-209.
[32] Goldberg E D, Somayajulu B L K, Galloway J, et al. Differences between barites of marine and continental origins[J]. Geochim. Cosmochim. Atca, 1969, 33:287-289.
[33] Bard E. Comparison of alkenone estimate with other paleotemperature proxies[R]. Geochem. Geophys. Geosyst 2, 2000GC000050, 2001.
[34] 贾国东, 彭平安. 有机生物地球化学与晚新生代古全球变化研究[J]. 地学前缘, 2005, 12(2):179-187. [JIA Guo-dong, PENG Ping-an. Organic biogeochemistry and past global change[J]. Earth Science Frontiers, 2005, 12(2):179-187.]
[35] Bernstein R E, Betzer P R, Feely R A, et al. Acantharian fluxes and strontium to chlorinity ratios in the North Pacific ocean[J]. Science, 1987, 237:1490-1494.
[36] Bertram M A, Cowen J P. Morphological and compositional evidence for biotic precipitation of marine barite[J]. J. Mar. Res., 1997, 55:577-593.
[37] van Beek P, Reyss J L, Bonte P, et al. Sr/Ba in barite:a proxy of barite preservation in marine sediments?[J].Marine Geology, 2003, 199:205-220.
[38] 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170. [HUANG Yong-jian, WANG Cheng-shan, WANG Yun-liang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2):163-170.]
[39] Rushdi A, McManus J, Collier R. Marine barite and celestite saturation in seawater[J]. Mar. Chem., 2000, 69:19-31.
计量
- 文章访问数: 1721
- HTML全文浏览量: 126
- PDF下载量: 10