李金澜,田军. 末次盛冰期巽他陆架海平面和植被变化对陆表碳通量影响的数值模拟研究[J]. 海洋地质与第四纪地质,2022,42(2): 110-118. doi: 10.16562/j.cnki.0256-1492.2022021101
引用本文: 李金澜,田军. 末次盛冰期巽他陆架海平面和植被变化对陆表碳通量影响的数值模拟研究[J]. 海洋地质与第四纪地质,2022,42(2): 110-118. doi: 10.16562/j.cnki.0256-1492.2022021101
LI Jinlan,TIAN Jun. Effects of Sunda Shelf exposure and vegetation changes on land-atmosphere carbon exchange during the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology,2022,42(2):110-118. doi: 10.16562/j.cnki.0256-1492.2022021101
Citation: LI Jinlan,TIAN Jun. Effects of Sunda Shelf exposure and vegetation changes on land-atmosphere carbon exchange during the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology,2022,42(2):110-118. doi: 10.16562/j.cnki.0256-1492.2022021101

末次盛冰期巽他陆架海平面和植被变化对陆表碳通量影响的数值模拟研究

Effects of Sunda Shelf exposure and vegetation changes on land-atmosphere carbon exchange during the Last Glacial Maximum

  • 摘要: 末次盛冰期巽他陆架陆地暴露面积比现代增加将近一倍,该时期东南亚的碳汇能力是否比现代更强?本文利用GOSAT现代卫星数据集、实测碳密度数据集,对现代森林和草原生态系统碳通量(陆表碳通量)进行分析,发现二者的固碳能力相差较大,与地球系统模式的结果一致。本文基于末次盛冰期巽他陆架上植被分布类型的争议,为量化末次盛冰期巽他陆架暴露对大气二氧化碳浓度变化(陆表碳通量)的影响,利用美国国家大气研究中心(NCAR)的通用陆地模型(CLM4),以巽他陆架的植被、陆地面积为敏感条件进行了两组试验,考察末次盛冰期巽他陆架植被变化对陆表碳通量的影响。通过敏感试验结果分析,结合已有的孢粉化石证据,认为当末次盛冰期巽他陆架暴露且被热带雨林覆盖时,仅通过陆表碳交换就会使得东南亚的碳汇能力增强约0.16 PgC/a,在全球大气二氧化碳浓度的冰期-间冰期旋回中扮演着重要角色, 表明植被重建的可靠性对模拟末次盛冰期巽他陆架的陆地碳循环过程及其对气候的反馈非常重要。模拟结果还表明,末次盛冰期暴露的巽他陆架应具有较强的储碳能力,与冰期陆地的碳源角色相反,值得进一步研究。

     

    Abstract: The land exposure area of the Sunda Shelf in the southern South China Sea during the last glacial maximum (LGM) was nearly twice that in modern times. Was the Sunda Shelf a stronger carbon sink at that time? Though the study of the LGM carbon cycle depends on reliable vegetation reconstruction, both GOSAT satellite data and measured carbon density data utilized show that the role of different ecosystems in the carbon cycle could be very different. Whether there were tropical forests or savanna grassland on the Sunda Shelf during the LGM is a controversy. The land-atmosphere carbon exchange of the forest ecosystem is much greater than that of the grassland ecosystem. We used the Community Land Model (CLM4) to carry out two groups of sensitivity cases, aiming at quantifying the impacts of land area increase and vegetation distribution on land-atmosphere carbon exchange. Combining the pollen fossil evidence, our results showed that the exposed Sunda Shelf covered by the forest ecosystem in the LGM absorbed more carbon from the atmosphere at a rate of 0.16 PgC/a than in modern times. It indicated that the Sunda Shelf in LGM was a carbon sink, which was opposite to the role of other terrestrial carbon sources and was worthy of further study.

     

/

返回文章
返回