雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源. 渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价[J]. 海洋地质与第四纪地质, 2021, 41(6): 194-205. DOI: 10.16562/j.cnki.0256-1492.2021020101
引用本文: 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源. 渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价[J]. 海洋地质与第四纪地质, 2021, 41(6): 194-205. DOI: 10.16562/j.cnki.0256-1492.2021020101
LEI Yanxiang, HE Lei, WANG Yumin, ZHANG Pengpeng, ZHANG Bin, HU Lei, WU Zhiguo, YE Siyuan. Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 194-205. DOI: 10.16562/j.cnki.0256-1492.2021020101
Citation: LEI Yanxiang, HE Lei, WANG Yumin, ZHANG Pengpeng, ZHANG Bin, HU Lei, WU Zhiguo, YE Siyuan. Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 194-205. DOI: 10.16562/j.cnki.0256-1492.2021020101

渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价

Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene

  • 摘要: 对海岸带滨海湿地土壤或沉积物中碳通量的定量评估是国内外碳循环研究的热点,但目前对碳通量评估涉及地面以下的土壤或沉积物深度大多不超过1 m(最多3 m),少有对更深更长时间尺度(如千年尺度)的沉积物中碳通量进行评估研究。对2016年在渤海湾西岸老黄河三角洲沉积区获取的BHZK13钻孔(长32.68 m)开展AMS14C测年和光释光(OSL)测年、粒度、有孔虫、总碳(TC)和有机碳(OC)浓度、主量元素(含营养元素)和原位密度等参数进行分析测试。结果显示,渤海湾西岸老黄河三角洲沉积区自晚更新世晚期以来,沉积环境自下而上可划分出7个沉积单元,分别对应MIS5期的潮坪相(U1)、泛滥平原相(U2)、河道相(U3)、全新世的潮坪—浅海相(U4)、一期黄河三角洲(5500~3600 cal.aBP)(U5)、改造层(3600 cal.aBP~700 BC)(U6)、二期黄河三角洲(700 BC—11 AD)(U7)。沉积速率在U5前缘相中最大(1.99 cm/a),在U1沉积环境中最小(0.014 cm/a)。相应地,有机碳埋藏通量在U5前缘相最大(134.56 g/(m2·a)),而最小值(0.16 g/(m2·a))出现在U3环境中。沉积速率是有机碳埋藏通量的主控因素,TC和OC与各营养元素都呈极显著的相关性。虽然老黄河三角洲沉积物中有机碳含量较低,但由于沉积速率相对较快,使得老黄河三角洲沉积体也是较好的有机碳贮库。

     

    Abstract: The quantitative assessment of carbon flux in soil or sediments of coastal wetlands has recently become a hotspot in carbon cycle research both at home and abroad. However, most of the depth of the sediment samples studied is less than 1 m (or a maximum no more than 3 meters), and there are few studies on carbon fluxes in deeper sediments or longer time scales, such as the millennium scale available. In order to reveal the carbon fluxes in deeper layers, a hole of 32.68 m deep (BHZK13) was drilled in the old Yellow River Delta on the west bank of Bohai Bay in 2016. Core samples are carefully described and tested for AMS14C and OSL dating, grain size analysis, foraminifera identification, and analysis of total carbon(TC), organic carbon (OC), and major elements (including nutrient elements) in addition to in-situ densities. The results show that since Late Pleistocene, the sedimentary environment of the old Yellow River Delta on the west coast of Bohai Bay can be subdivided into seven sub-environments, namely, the tidal flat in MIS5 (U1), floodplain (U2), river channel (U3), Holocene tidal flat (U4), Yellow River Delta phase one (U5, 5500~3600 cal.aBP), reconstruction layer (U6) and Yellow River Delta phase two (U7). The highest sedimentation rate is found in the deltaic front of the delta phase one (1.99 cm/a), while the lowest found in the tidal flat (0.014 cm/a). Correspondingly, the highest burial rate of organic carbon is found in the deltaic front of the Yellow River Delta phase one (134.56 g/(m2·a)), with the lowest found in river channel deposits. Correlation analysis suggests that the sedimentation rate is the main controlling factor on the burial rate of organic carbon in various sedimentary environments. TC and OC has a very significant correlation with each nutrient element. Although the content of organic carbon in the sediments of the Old Yellow River Delta is relatively low due to the high sedimentation rate of the Delta, the modern Yellow River Delta can still be considered as an excellent carbon sink also due to its high sedimentation rate.

     

/

返回文章
返回