宫伟, 姜效典, 邢军辉, 李德勇, 徐冲. 新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约[J]. 海洋地质与第四纪地质, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801
引用本文: 宫伟, 姜效典, 邢军辉, 李德勇, 徐冲. 新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约[J]. 海洋地质与第四纪地质, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801
GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801
Citation: GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801

新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约

Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate

  • 摘要: 新几内亚-所罗门弧(PN-SL)位于印度-澳大利亚板块与太平洋板块汇聚边界、新特提斯构造域东端。晚白垩世以来,逐渐演化形成复杂的沟-弧-盆-台、俯冲时序完整的俯冲构造体系。受多期次、多类型板块俯冲起始作用的制约,PN-SL俯冲体系深部结构呈现出明显的空间差异性:板块俯冲深度由>500 km减小至不足100 km,板块俯冲角度则由>70°减小至30°。俯冲体系东侧毗邻的翁通爪哇海台作为世界上最大的海台,其显著的“凸起”构造以及低密度结构,重新塑造了PN-SL俯冲体系的构造格局,但不同于低密度结构俯冲诱发海沟位置后移、俯冲极性反转二元经典模式,弧后所罗门海盆发生反向俯冲的同时,中新世以来呈现出NW向、NE向和SW向的多向俯冲过程。这意味着翁通爪哇海台与PN-SL俯冲体系汇聚形变过程并非仅依据板块密度变化来简单解释,需要考虑其复杂的构造环境和诸多的构造要素。特别是作为岩石圈强度的重要影响因子—俯冲体系流体活动,导致岩石圈强度减弱、熔点降低的同时,伴随板块俯冲向地球深部运移,促使板片脱水并与地幔楔发生水化交代作用,进而改变壳幔物质组成及流变学性质,诱发地幔楔部分熔融和岛弧岩浆活动,是理解板块俯冲构造动力的关键切入点。

     

    Abstract: A complicated subduction system, the New-Guinea-Solomon arc (PN-SL), exists in the convergent boundary between the Indo-Australian and Pacific plates at the eastern end of the Neo-Tethyan tectonic domain. Since late Cretaceous, the PN-SL system has gradually become a complex trench-arc-basin-oceanic plateau system suffered various stages of subduction. Constrained by the multi-stages and multi-types of plate subduction initiation, the deep structure of the PN-SL subduction system varies dramatically in space. Among the subduction zones within the PN-SL subduction system, the extension depth of the subducting plate changes from over 500 km to nearly 100 km and the dip angle of the plate decreases from over 70° to 30°. The Ontong Java Plateau, the largest oceanic plateau in the world, is located in the east of the PN-SL subduction system. Owing to the large crustal bulge and associated low-density structure, the tectonic framework of the PN-SL subduction system is reconstructed. Driven by the subduction of the Ontong Java Plateau, the Solomon Sea back-arc basin has subducted beneath the Pacific ocean towards northwest, northeast and southwest directions since Miocene, sharply contrasted with the classical binary model of the subduction polarity reversal and transference or trench jump induced by the subduction of the buoyant lithosphere. This indicates that the convergent deformation process between the Ontong Java Plateau and the PN-SL subduction system cannot just be interpreted as the change in plate density. Complex tectonic environment and various tectonic elements must be considered in the studies on the subduction and convergent deformation of the oceanic plateau. In particular, as an important influence factor of the strength of the lithosphere, the fluid activity of the subduction system, which may induce the strength weakening and decrease in the melting point of the lithosphere, must be carefully considered. Moreover, the fluid may be transported into the deep part of the Earth together with the subduction of plate and make contributions to the dehydration of plate and the hydro-metasomatism within the mantle wedge, which changes the composition and rheological properties of the crust and mantle and induces partial melting of the mantle wedge and island magmatism. Therefore, it is concluded that fluid plays an important role in the subduction initiation and evolution as a key entry point for understanding the subduction tectonic dynamics of the plate.

     

/

返回文章
返回