Citation: | SUN Zhilei, DOU Zhenya, HUANG Wei, CUI Ruyong, HUANG Xin, HE Yongjun. KEY ISSUES FOR MICROBIAL WEATHERING STUDY IN MODERN SUBMARINE HYDROTHERMAL SULFIDES[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 65-74. DOI: 10.3724/SP.J.1140.2014.01065 |
[1] |
Hannington M, Jamieson J, Monec T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2010, 39:1155-1158.
|
[2] | 曾志刚. 海底热液地质学[M],2011:550-567. 北京:科学出版社.[ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing:Science Press, 2011:550-567] |
[3] |
Hannington M D, Barrie C T, Bleeker W. The giant Kidd Creek volcanogenic massive sulfide deposit, Western Abitibi subprovince, Canada[C]//The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Economic Geology, Monograph 10, Preface and introduction, 1999, 1-28.
|
[4] |
Rona P A. The changing vision of marine minerals[J]. Ore Geology Reviews, 2008, 33:618-666.
|
[5] |
Rona P A. Large Seafloor Volcanic-hosted Massive Sulfide Deposits:Discovered and Undiscovered[C]//Deep-Sea Mining of Seafloor Massive Sulfides:A Reality for Science and Society in the 21st Century Science and Policy. Workshop April 12, 2009 Woods Hole, Massachusetts, USA, abstract.
|
[6] |
Edwards K J. Formation and degradation of seafloor hydrothermal sulfide deposits[C]//Sulfur Biogeochemistry-Past and Present. Geological Society of America Special Paper,2004, 379:83-96.
|
[7] |
Jannasch H W. The chemosynthetic support of life and microbial diversity at deep-sea hydrothermal vents[J]. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1985, 225:277-297.
|
[8] |
Karl D. Ecology of free-living, hydrothermal vent microbial communities[C]//The microbiology of deep-sea hydrothermal vents. Boca Raton, CRC Press, 1995:35-124.
|
[9] |
Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal site[J]. Canadian Mineralogist, 1988, 26:859-869.
|
[10] |
Eberhard C, Wirsen C O, Jannasch H W. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents[J]. Geomicrobiology Journal, 1995, 13:145-164.
|
[11] |
Metz S, Trefry J H, Nelson J A. History and Geochemistry of a metalliferous sediment core from the Mid-Atlantic Ridge at 26 N[J]. Geochimica et Cosmochimica Acta, 1988, 52:2369-2378.
|
[12] |
Glynn S, Mills R A, Palmer M R, et al. The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides[J]. Earth and Planetary Science Letters, 2006, 244:170-185.
|
[13] |
Severmann S, Mills R A, Palmer M R, et al. The role of prokaryotes in subsurface weathering of hydrothermal sediments:A combined geochemical and microbiological investigation[J]. Geochimica et Cosmochimica Acta, 2006, 70:1677-1694.
|
[14] |
Humphris S E, Herzig P M, Miller D J, et al. The internal structure of an active sea-floor massive sulphide deposit[J]. Nature, 1995, 377:713-716.
|
[15] |
Lalou C, Reyss J L, Brichet E, et al. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26 N[J]. Journal of Geophysical Research, 1995, 100:17855-17862.
|
[16] |
Rona P A, Bogdanov Y A, Gurvich E G, et al. Relict hydrothermal zones in the TAG hydrothermal field, Mid-Atlantic ridge 26 N, 45 W[J]. Journal of Geophysical Research, 1993, 98:9715-9730.
|
[17] |
Rona P A, Fujioka K, Ishihara T, et al. An active low-temperature hydrothermal mound and a large inactive sulfide mound found in the TAG hydrothermal field, Mid-Atlantic Ridge 26N, 45W[J]. EOS Trans. AGU, 1998, 79:F920.
|
[18] |
White S N, Humphris S E, Kleinrock M C. New observations on the distribution of past and present hydrothermal activity in the TAG area of the Mid-Atlantic Ridge (2608'N)[J]. Marine Geophysical Researches, 1998, 20:41-56.
|
[19] |
Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals:Results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003, 67:2843-2856.
|
[20] |
Andrews G R. The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces[J]. Biotechnology and Bioengineering, 1988, 31:378-381.
|
[21] |
Konhauser K O. Introduction to Geomicrobiology[M]. Blackwell Publishing Company, 2011:192-234.
|
[22] |
Verati C, de Donato P, Prieur D, et al. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate)[J]. Chemical Geology, 1999, 158:257-269.
|
[23] |
Lawrence J R, Kwong Y T J, Swerhone G D W. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans[J]. Canadian Journal of Microbiology, 1997, 43:178-188.
|
[24] |
Chan C S, Fakra S C, Emerson D, et al. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth:implications for biosignature formation[J]. The ISME Journal, 2011, 5(4):717-727.
|
[25] |
Suzuki T, Hashimoto H, Matsumoto N, et al. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks[J]. Applied Environmental Microbiology, 2011, 77:2877-2881.
|
[26] |
Suzuki T, Hashimoto H, Itadani A, Matsumoto N, et al. Silicon and phosphorus linkage with iron via oxygen in the amorphous matrix of Gallionella ferruginea stalks[J]. Applied Environmental Microbiology, 2012, 78:236-241.
|
[27] |
Staudigel H, Furnes H, McLoughlin N, et al. 3.5 billion years of glass bioalteration:Volcanic rocks as a basis for microbial life?[J]. Earth-Science Reviews, 2008, 89:156-176.
|
[28] |
Cockell C S, van Calsteren P, Mosselmans J F W, et al. Microbial endolithic colonization and the geochemical environment in young seafloor basalts[J]. Chemical Geology, 2010, 279:17-30.
|
[29] |
Foriel J, Philippot P, Susini J, et al. High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contemporary microbial filaments[J]. Geochimica et Cosmochimica Acta, 2004, 68:1561-1569.
|
[30] |
Zierenberg R A, Schiffman P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge[J]. Nature, 1990, 348:155-157.
|
[31] |
Herzig P M, Hannington M D, Scott S D, et al. Gold-rich seafloor gossans in the Troodos ophiolite and on the Mid-Atlantic Ridge[J]. Economic Geology, 1991, 86:1747-1755.
|
[32] |
Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data[J]. Journal of Geophysical Research, 1995, 100:12427-12555.
|
[33] |
Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in~3.4 billion-year-old sediments[J]. Earth and Planetary Science Letters, 2011, 301:393-402.
|
[34] |
Lengke M, Southam G. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex[J]. Geochimica et Cosmochimica Acta, 2004, 69:3759-3772.
|
[35] |
Reith F, Etschmann B, Grosse C, et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:17757-17762.
|
[36] |
Reith F, Fairbrother L, Nolze G, et al. Nanoparticle factories:Biofilms hold the key to gold dispersion and nugget formation[J]. Geology, 2010, 38:843-846.
|
[37] |
Reith F, Stewart L, Wakelin S A. Supergene gold transformation:Secondary and nano-particulate gold from southern New Zealand[J]. Chemical Geology, 2012, 320321:32-45.
|
[38] |
Fitz R M, Cypionka H. Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans[J]. Archives of Microbiology, 1990, 154:400-406.
|
[39] |
Lengke M F, Southam G. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex[J]. Geochimica et Cosmochimica Acta, 2005, 69:3759-3772.
|
[40] |
Lengke M F, Southam G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex[J]. Geochimica et Cosmochimica Acta, 2006, 70:3646-3661.
|
[41] |
Lengke M F, Southam G. The deposition of elemental gold from gold(I)-thiosulfate complex mediated by sulfate-reducing bacterial conditions[J]. Economic Geology, 2007, 102:109-126.
|
[42] |
Herzig P M, Hannington M D. Polymetallic massive sulfides at the modem seafloor:A review[J]. Ore Geology Reviews, 1995, 10:95-115
|
[43] |
Wirsen C O, Jannasch H W, Molyneaux S J. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites[J]. Journal of Geophysical Research, 1993, 98:9693-9703.
|
[44] |
Polz M F, Robinson J J, Cavanaugh C M, et al. Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site[J]. Limnology and Oceanography, 1998, 43:1631-1638.
|
[45] |
Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and environmental microbiology, 2002, 68:3085-3093.
|
[46] |
Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J]. Geomicrobiology Journal, 2003, 20:199-214.
|
[47] |
Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews, 2005, 72:1-19.
|
[48] |
Langley S, Igric P, Takahashi Y, et al. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean[J]. Geobiology, 2009, 7:35-49.
|
[49] |
Peng X, Chen S, Zhou H, et al. Diversity of biogenic minerals in low-temperature Si-rich deposits from a newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge[J]. Journal of Geophysical Research, 2011, 116:G03030, doi: 10.1029/2011JG001691.
|
[50] |
Sun Z, Zhou H, Glasby G P, et al. Formations of Fe-Mn-Si oxide and nontronite deposits:example from hydrothermal fields on the Valu Fa Ridge, Lau Basin[J]. Journal of Asian Earth Sciences, 2012, 43:64-76.
|
[51] |
Toner B M, Santelli C M, Marcus M A, et al. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents:Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 2009, 73:388-403.
|