ZHANG Ying, XIA Dunsheng, ZHAO Ruirui, ZHANG Junhui, XU shujing, JIA Jia. MAGNETIC PROPERTIES OF THE LAKESHORE SEDIMENTS OF THE BOSTEN LAKE, XINJIANG, CHINA AND THEIR ENVIRONMENTAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 93-102. DOI: 10.3724/SP.J.1140.2013.04093
Citation: ZHANG Ying, XIA Dunsheng, ZHAO Ruirui, ZHANG Junhui, XU shujing, JIA Jia. MAGNETIC PROPERTIES OF THE LAKESHORE SEDIMENTS OF THE BOSTEN LAKE, XINJIANG, CHINA AND THEIR ENVIRONMENTAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 93-102. DOI: 10.3724/SP.J.1140.2013.04093

MAGNETIC PROPERTIES OF THE LAKESHORE SEDIMENTS OF THE BOSTEN LAKE, XINJIANG, CHINA AND THEIR ENVIRONMENTAL IMPLICATIONS

More Information
  • Received Date: June 04, 2013
  • Revised Date: July 04, 2013
  • The lakeshore sediment and its magnetic characteristics may suggest hydrodynamic conditions, sedimentary environment and paleoclimate. In this paper, we choose the samples of different lithology from the cores obtained at the Bosten lakeside for magnetic studies. Combined with the data of X-ray diffraction, grain size and TOC content, the depositional process was inferred. The magnetic minerals of the samples are dominated by ferrimagnetic minerals with low coercivity and rather coarse particle size. Magnetite is the main magnetic mineral in the sediment. In the samples of different lithology, magnetic susceptibility values show distinct differences. In the upper part of the core,the values are relatively high, while in the middle part of the core consisting of dark silty mud, the values are apparent high and vary vertically. However, the magnetism of the peat soil with high TOC matter is quite weak. In the lower part, the samples show low values of magnetic susceptibility. To the bottom, the color of the sediment turns to black and the susceptibility values increase. XRD analysis reveals that the sediment mainly consists of sands and silts of quartz and feldspar showing a coarsening upwards sequence in general with some opposite fluctuations. Organic matter of the middle part varies apparently, suggesting the shifting of the sedimentary environment. With the changes in magnetic properties in the samples of different lithology, and based on the response of grain size, organic matter and sediments color to sedimentary dynamics, we can tentatively infer that the lake has experienced a complicated history of sediment dynamic changes, reflected by alternating lakeshore facies, limnic facies and shallow lake facies.
  • [1]
    Oldfield F, Barnosky C, Leopold E B, et al. Mineral magnetic studies of lake sediments[J]. Hydrobiologia, 1983, 103(1):37-44.
    [2]
    Jones B F, Bowser C J. The mineralogy and related chemistry of lake sediments[C]//Lakes:chemistry, geology, physics[M]. Berlin Heidelberg, New York:Springer, 1978:179-235.
    [3]
    沈吉, 薛滨, 吴敬禄. 湖泊沉积与演化[M]. 北京:科学出版社, 2010:72.[SHEN Ji, XUE Bin, WU Jinlu. Lake sedimentary and evolution[M]. Beijing:Science Press, 2010:72.]
    [4]
    Thompson R, Oldfield F. Environmental Magnetism[M]. London:Allen Unwin, 1986.
    [5]
    Oldfield F, Dearing J A, Thompson R, et al. Some magnetic properties of lake sediments and their possible links with erotion rates[J]. Polskie Archive Hydrobiologia, 1978, 25:321-331.
    [6]
    Dearing J A. Holocene environmental change from magnetic proxies in lake sediment. Quaternary Climates, Environments and Magnetism. Cambridge:Cambridge University Press, 1999:233-234.
    [7]
    俞立中, 许羽, 张卫国. 湖泊沉积物的矿物磁性测量及其环境应用[J]. 地球物理学进展, 1995, 10(1):11-21.

    [YU Lizhong, XU Yu, ZHANG Weiguo, Magnetic measurement on lake sediment and its environmental application[J]. Progress in Geophysics, 1995, 10(2):12-24.]
    [8]
    Dong J, Wang Y, Zhang S H, et al. Environmental magnetic comparisons between distal and proximal sediments of Huangqihai Lake, Inner Mongolia, China[J]. Science China (Earth Science), 2012, 55(9):1494-1503.
    [9]
    金章东. 湖泊沉积物的矿物组成、成因、环境指示及研究进展[J]. 地球科学与环境学报, 2011, 33(1):34-44

    ,77.[JIN Zhangdong. Composition, Origin and Environmental Interpretation of Minerals in Lake Sediments and Recent Progress[J]. Journal of Earth Sciences and Environment, 2011, 33(1):34-44, 77.]
    [10]
    刘泽纯, 黄巧华. 昆明盆地两孔岩心的沉积特征及环境磁学分析[J]. 沉积学报, 1992, 10(2):54-61.

    [LIU Zechun, HUANG Qiaohua. Sedimentary charaters and environmental magnetism analysis of two cores in Kunming Basin[J]. Acia Sedimentologica Sinica, 1992, 10(2):54-61.]
    [11]
    Pachur H J, Wünnemann B, Zhang H C. Lake Evolution in the Tengger Desert,Northwestern China during Last 40,000 Years[J]. Quaternary Researeh, 1995, 44(2):171-180.
    [12]
    李炳元. 青藏高原大湖期[J]. 地理学报, 2000, 55(2):174-181.

    [LI Bingyuan, The Last Greatest Lakes on the Xizang (Tibetan) Plateau[J]. Acta Geographica Sinica, 2000, 55(2):174-181.]
    [13]
    春喜, 王宗礼, 夏敦胜. 吉兰泰盐湖的形成及指示的环境意义[J]. 盐湖研究, 2008, 16(3):11-18.

    [CHUN Xi, WANG Zongli, XIA Dunsheng, et al. Formation of Jilantai Salt Lake and Its Environmental Significance[J]. 2008, 16(3):11-18.]
    [14]
    Evans M E, Heller F. Environmental Magnetism:Principles and Applications of Enviromagnetics[M]. Oxford (UK):Academic Press, 2003.
    [15]
    胡守云, 吉磊, 王苏民,等. 呼伦湖地区扎费诺尔晚第四纪湖泊沉积物的磁化率变化及其影响因素[J].湖泊科学, 1995, 7(1):33-40.

    [HU Shouyun, JI Lei, WANG Suming, et al. Magnetic susceptibility of the late Quaternary lacustrine sediments and its influence factors in Julanur, Hulun lake area[J]. Journal of Lake Sciences, 1995, 7(1):33-40.
    [16]
    殷志强, 秦小光, 吴金水,等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究, 2008, 28(2):345-353.

    [YIN Zhiqiang, QIN Xiaoguang, WU Jinshui, et al. Multimodal grain-size distribution characteristic and formation mechanism oflake sediments[J]. Quaternary Sciences, 2008, 28(2):345-353.]
    [17]
    王建, 刘泽纯, 姜文英, 等. 磁化率与粒度、矿物的关系及其古环境意义[J]. 地理学报,1996,51(2):155-163.

    [WANG Jian, LIU Zechun, JIANG Wenying, et al. A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications[J]. Acta Geographica Sinica, 1996, 51(2):155-163.]
    [18]
    谢红霞, 张卫国, 顾成军, 等. 巢湖沉积物磁性特征及其对沉积动力的响应[J]. 湖泊科学, 2006, 18(1):43-48.

    [XIE Hongxia, ZHANG Weiguo, GU Chengjun, et al. Magnetic properties of sediments from Lake Chaohu and its response to sedimentary dynamics[J]. Journal of Lake Sciences, 2006, 18(1):43-48.]
    [19]
    文启忠, 郑洪汉. 北疆地区晚更新世以来的气候环境变迁[J]. 科学通报, 1988, 33(10):771-774.

    [WEN Qizhong, ZHENG Honghan. The climate change in Border region since Late Pleistocene[J]. Chinese Science Bulletin, 1988, 33(10):771-774.]
    [20]
    李吉均. 中国西北地区晚更新世以来环境变迁模式[J]. 第四纪研究, 1990, 10(3):197-204.

    [LI Jijun. The patterns of environmental changes since late Pleistocene in northwestern, China[J]. Quaternary Sciences, 1990, 10(3):197-204.]
    [21]
    Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4):351-364.
    [22]
    陈发虎, 黄小忠, 杨美临,等. 亚洲中部干旱区全新世气候变化的西风模式——以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6):881-887.

    [CHEN Fahu, HUANG Xiaozhong, YANG Meillin, et a1. Westerly dominated holocene climate model in arid Central Asia-Case study on Bosten Lake,Xinjiang,China[J]. Quaternary Sciences, 2006, 26(6):881-887.]
    [23]
    许英勤. 新疆博斯腾湖地区全新世以来的孢粉组合与环境[J]. 干旱区地理, 1998, 21(2):43-49.

    [XU Yingqin. The assemblage of Holocene spore pollen and its environment in Bosten Lake area, Xinjiang[J]. Arid Land Geography, 1998, 21(2):43-49.]
    [24]
    Huang X Z, Chen F H, Fan Y X, et al. Dry late-glacial and early Holocene climate in arid centr-al Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1-2):19-27.
    [25]
    Mischke S, Wünnemann B. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry:Possible palaeoclimatic implications[J]. Quaternary International, 2006, 154:100-112.
    [26]
    Yang M L, Chen F H, Wunnemann B, et al. Holocene lake status records and moisture change in Arid Central Asia[J]. Quaternary International, 2008(doi:10.1016/j. quaint. 2008. 01. 003.)
    [27]
    钟巍, 舒强. 南疆博斯腾湖近12.0 kaBP以来古气候与古水文状况的变化[J]. 海洋与湖沼, 2001, 32(2):213-220.

    [ZHONG Wei, SHU Qiang. Palaeoclimatic and paleohydrologic oscillations since about 12.0 kaBP at Bosten Lake, Southern Xinjiang[J]. Oceanologia et Limnologia Sinica, 2001, 32(2):213-220.]
    [28]
    张家武, 王君兰, 郭晓燕,等. 博斯腾湖全新世岩心沉积物碳酸盐氧同位素气候意义[J]第四纪研究, 2010, 30(6):1078-1087.

    [ZHANG Jiawu,WANG Junlan,GUO Xiaoyan, et al. Paleoclimatic significance of oxygen isotope composition of carbonates from a sediment core at Bosten Lake, Xinjiang, China[J]. Quarternary Sciences, 2010, 30(6):1078-1087.]
    [29]
    Wünnemann B, Mischke S, Chen F H. A Holocene sedimentary record from Bosten Lake, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234(2-4):223-238.
    [30]
    程其畴. 博斯腾湖研究[M]. 南京:河海大学出版社, 1995:1-7.[CHEN Qichou. Bosten Lake resarch[M]. Nanjing:Hehai University Press, 1995:1

    -7.]
    [31]
    马学慧. 新疆博斯腾湖的湖滨沼泽[J]. 海洋与湖沼, 1989, 20(6):554-563.

    [MA Xuehui. Lakeshore swamps of Bosten Lake in the Xinjiang automomous region[J]. Oceanologia et Limnologia Sinica, 1989, 20(6):554-563.]
    [32]
    赵钟媛. 苏州澄湖古湖沼洼地沉积记录揭示的古环境意义[D]. 上海:华东师范大学, 2010.[ZHAO Zhongyuan. Paleoenvironment Significance Revealed by Sedimentary Recordsof Paleolimnological from Chenghu LakeM, Suzhou[D].Shanghai:East China Normal University, 2010.]
    [33]
    Thompson R, Stober J C, Turner G M, et al. Environmental applications of magnetic measurements[J]. Science, 1980, 207(4430):481-486.
    [34]
    刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4):1041-1048.

    [LIU Qingsong, DENG Chenglong. Magnetic susceptibility and its environmental significance[J]. Chinese Journal of Geophysics, 2009, 52(4):1041-1048.]
    [35]
    Liu Q S. Deng C L, Yu Y. Temperature dependence of magnetic susceptibility in argon environment:Implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1):102-112.
    [36]
    Hrouda F. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge[J]. Geophysical Journal International, 1994, 118(3):604-612.
    [37]
    吴文芳, 李金华, 张春霞. 有机质对纳米级磁铁矿热稳定性的影响[J]. 地球物理学报, 2010, 53(10):2427-2434.

    [WU Wenfang, LI Jinhua, ZHANG Chunxia, et al. Effects of organic matter on thermal stability of nanometer-sized magnetite[J]. Chinese Journal of Geophysics, 2010, 53(10):2427-2434.]
    [38]
    Dearing J A, Bird P M, Dann R J L, et al. Secondary ferrimagnetic minerals in Welsh soils:a comparison of mineral magnetic detection methods and implications for mineral formation[J]. Geophysical Journal International, 1997, 130(3):736-727.
    [39]
    King J, Banerjee S K, Marvin J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials:some results from sediments[J].Earth and Planetary Science Letters, 1982, 59(2):404-419.
    [40]
    Schippers A, Jørgensen B B. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(6):915-922.
    [41]
    敖红, 邓成龙.磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展, 2007, 22(2):432-442.

    [AO Hong, DENG Chenglong. Review in the identification of magnetic minerals[J]. Progress in Geophysics, 2007, 22(2):432-442.]
    [42]
    Williams M. Evidence for the dissolution of magnetite in recent Scottish peats[J]. Quaternary Research, 1992, 37(2):171-182.
    [43]
    Hanesh M, Stanjek H, Petersen N. Thermomagnetic measurements of soil iron minerals:the role of organic carbon[J]. Geophysical Journal International, 2006, 165(1):53-61.
    [44]
    田庆春, 杨太保, 张述鑫. 青藏高原腹地湖泊沉积物磁化率及其环境意义[J]. 沉积学报, 2011, 29(1):143-150.

    [TIAN Qingchun, YANG Taibao, ZHANG Shuxin. Magnetic Susceptibility and Its Environmental Significance of Lake Sediments in Tibet Plateau[J]. Acta Sedimentologica Sinica, 2011, 29(1):143-150.]
    [45]
    殷勇, 方念乔, 王倩, 等. 云南中甸纳帕海湖泊沉积物的磁化率及环境意义[J]. 地理科学, 2002, 22(4):413-419.

    [YIN Yong, FANG Nian-qiao, WANG Qian, et al. Magnetic Susceptibility of Lacustrine Sediments and Its Environmental Significance:Evidence from Napahai Lake, Northwestern Yunnan, China[J]. Scientia Geographica Sinica, 2002, 22(4):413-419.]
    [46]
    孙千里, 周杰, 肖举乐. 岱海沉积物粒度特征及其古环境意义[J]. 海洋地质与第四纪地质, 2001, 21(1):93-95.

    [SUN Qianli, ZHOU Jie, XIAO Jule. Grain size characteristics of lake Daihai sediments and its paleoenvironment significance[J]. Marine Geology and Quaternary Geology, 2001, 21(1):93-95.]
    [47]
    Helmke J P, Schulz M, Bauch H A. Sediment-color record from the northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500,000 years[J].Quaternary Sciences, 2002, 57(1):49-57.
    [48]
    郝运轻, 边雪梅, 王德坪, 等. 东营凹陷王46井孔二段暗色泥岩沉积环境[J]. 地球科学与环境学报. 2006, 28(3):45-47

    , 91.[HAO Yunqing, BIAN Xuemei, W ANG Deping, et al. Sedimentary environment of dark mudstone member of Kongdian formation from well wang 46, Dongying Sag[J]. Journal of Earth Sciences and Environment, 2006, 28(3):45-47, 91.]
  • Related Articles

    [1]ZHOU Jingyi, DU Xuebing, CHEN Maogen, JIANG Cen, ZHOU Ying. Identification of lithologic traps in block N of Bonaparte Basin, Australia[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 183-193. DOI: 10.16562/j.cnki.0256-1492.2020122302
    [2]ZHANG Min, SHI Lianqiang, GUO Junli, XU Dailu. Magnetic properties of sediments and their implications for sedimentary dynamic environment in the middle and lower reaches of the Qiantang River[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 181-191. DOI: 10.16562/j.cnki.0256-1492.2020062302
    [3]ZANG Suhua, LUO Weifeng, MA Xiaodong, HUA Caixia. Depositional characterristics of the first member of Dainan formation in Qingtong sag, Subei basin and their significance to lithological exploration[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 107-115. DOI: 10.16562/j.cnki.0256-1492.2018.03.010
    [4]ZHANG Lianjie, HU Rijun, ZHU Longhai, ZHANG Pan. Distribution of heavy mineral assemblages in Wendeng nearshore waters and their implications for sedimentary dynamic environment[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 127-138. DOI: 10.16562/j.cnki.0256-1492.2018.01.013
    [5]CHEN Xiaoying, LIU Jinqing, GUO Lei, LIU Xiaolei, YIN Ping. SHORT TERM DEPOSITIONAL DYNAMIC PROCESSES AT DAGU RIVER MOUTH OF JIAOZHOU BAY[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 45-50. DOI: 10.16562/j.cnki.0256-1492.2016.06.006
    [6]QIAO Lulu, SHI Jinghao, GAO Fei, YIN Ping, LI Jianchao. NUMERICAL SIMULATION OF SEDIMENT DYNAMIC PROCESSES FOR MUD AREAS ON THE EAST CHINA SEA CONTINENTAL SHELVES: A REVIEW[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 155-166. DOI: 10.3724/SP.J.1140.2014.03155
    [7]ZHENG Boying, CAO Yanmin, ZHANG Enlou, GAO Guang. C, N STABLE ISOTOPE RECORDS OF ENVIRONMENTAL CHANGES IN BOSTEN LAKE DURING THE PAST 200 YEARS[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 165-171. DOI: 10.3724/SP.J.1140.2012.06165
    [8]MA Xiaochuan, FAN Fengxin, YAN Jun. IN-SITU MONITORING PLATFORM FOR MARINE SEDIMENT DYNAMICS AND ITS APPLICATION[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 179-185. DOI: 10.3724/SP.J.1140.2011.04179
    [9]HE Qixiang. A DISCUSSION ON SEDIMENT DYNAMICS[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10. DOI: 10.3724/SP.J.1140.2010.04001
    [10]WANG Qing, ZHONG Shao-yun, LIU Jian-hua, SONG Chuan-guang. THE CHANNEL DYNAMIC GEOMORPHOLOGY OF MIAODAO STRAIT,SHANDONG,CHINA[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 17-24.

Catalog

    Article views (1717) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return