Citation: | CHEN Daigeng, ZENG Zhigang, ZHAI Bin, YIN Xuebo, ZHANG Guoliang, OUYANG Hegen. POURBAIX DIAGRAMS AND GEOLOGICAL IMPLICATIONS OF Fe-S-H2O HYDROTHERMAL SYSTEM NEAR 13°N ON THE EAST PACIFIC RISE[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 9-15. DOI: 10.3724/SP.J.1140.2010.02009 |
[1] |
Klitgord K D, Manderickx J. Northern East Pacific Rise:magnetic anomaly and bathymetry framework[J]. Journal of Geophysical Research, 1982, 87(B8):6725-6750.
|
[2] |
Francheteau J,Ballard R D. The East Pacific Rise near 21°N, 13°N and 20°N:Inferences for along-strike variability of axial processes of the mid-ocean ridge[J]. Earth and Planetary Science Letters, 1983,64:93-116.
|
[3] |
Hékinian R, Fevrier M, Avedik F,et al. East Pacific Rise near 13°N:Geology of new hydrothermal fields[J]. Science, 1983, 219:1321-1324.
|
[4] |
Hékinian R, Francheteau J, Renard V,et al. Intense hydrothermal activity at the axis of the East Pacific Rise near 13°N:Submersible witnesses the growth of a sulfide chimney[J]. Marine Geophys.Res., 1983, 6:1-14.
|
[5] |
Hékinian R,Fouquet Y. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N[J]. Econ. Geol., 1985, 80:221-243.
|
[6] |
Gente P, Auzende J M, Renard V,et al. Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13°N[J]. Earth and Planetary Science Letters, 1986, 78:224-236.
|
[7] |
Fouquet Y, Aucla G, Cambon P,Etoubleau J. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise[J]. Marine Geology, 1988, 84(3-4):145-178.
|
[8] |
Moss R,Scott S D. Silver in sulfide chimneys and mounds from 13 degrees N and 21 degrees N, East Pacific Rise[J]. Canadian Mineralogist, 1996, 34:697-716.
|
[9] |
Fouquet Y, Knott R, Cambon P,et al. Formation of large sulfide mineral deposits along fast spreading ridges:Example from off-axial deposits at 12°43'N on the East Pacific Rise[J]. Earth and Planetary Science Letters, 1996, 144:147-162.
|
[10] |
Vink B W. Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams[J]. Chemical Geology, 1996, 130:21-30.
|
[11] |
Pichler T, Veizer J. Precipitation of Fe Ⅲ oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea[J]. Chemical Geology, 1999, 162:15-31.
|
[12] |
Filella M, Nelson Belzile N, Chen Y W. Antimony in the environment:a review focused on natural waters Ⅱ. Relevant solution chemistry[J]. Earth-Science Reviews, 2002, 59:265-285.
|
[13] |
Descostes M, Vitorge P,Beaucaire C. Pyrite dissolution in acidic media[J]. Geochimica et Cosmochimica Acta, 2004, 68(22):4559-4569.
|
[14] |
Glynn S, Mills R A, Palmer M R,et al. The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides[J]. Earth and Planetary Science Letters, 2006, 244:170-185.
|
[15] |
Christel L,Alexandra N. Energetics of stable and metastable low-temperature iron oxides and oxyhydro xides[J]. Geochimica et Cosmochimica Acta, 1998, 62(17):2905-2913.
|
[16] |
Byrne R H,Laurie S H. Influence of pressure on chemical equilibria in aqueous system s-with particular reference to seawater[J]. Pure Appl. Chem., 1999, 71:871-890.
|
[17] |
Michard G, Albarede F, Michard A,et al.Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site[J]. Earth and Planetary Science Letters,1984, 67:297-307.
|
[18] |
Bowers T S, Campbell A C, Measures C I,et al.Chemical controls on the composition of vent-fluids at 11°~13°N and 21°N, East Pacific Rise[J]. Journal of Geophysical Research, 1988, 93(B5), 4522-4536.
|
[19] |
German C R, Colley S, Palmer M R,et al.Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise[J]. Deep-Sea Research I, 2002, 49:1921-1940.
|
[20] |
Majzlan J, Navrotsky A,Schwertmann. Thermodynamics of iron oxides:Part Ⅲ. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and ε-Fe2O3[J]. Geochimica et Cosmochimica Acta, 2004, 68(5):1049-1059.
|
[21] |
Beverskog B,Puigdomenech I. Revised pourbaix diagrams for iron at 25~300℃[J]. Corrosion Science, 1996, 38(12):2121-2135.
|
[22] |
Kelsall G H,Williams R A. Thermodynamics of Fe-Si-H2O at 298K[J]. J. Electrochem. Soc, 1991, 138:931-940.
|
[23] |
Hemingway B S. Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, on selected oxygen buffer reactions[J]. Am. Mineral., 1990, 75:781-790.
|
[24] |
Silvester E, Charlet L, Tournassat C,et al. Redox potential measurements and Mössbauer spectrometry of FeⅡ adsorbed onto FeⅢ (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2005, 69(20):4801-4815.
|
[25] |
Warner T E, Rice N M, Taylor N. Thermodynamic stability of pentlandite and violarite and new EH-pH diagrams for the iron-nickel sulphur aqueous system[J]. Hydrometallurgy, 1996, 41:107-118.
|
[26] |
傅献彩, 沈文霞, 姚天扬. 物理化学(第四版)[M]. 北京:高等教育出版社, 1990:474-499.[FU Xiancai,SHEN Wenxia,YAO Tianyang. Physical Chemistry(the fourth edition)[M]. Beijing:Advanced Education Publication, 1990:474
-499.]
|
[27] |
Taylor D F.Thermodynamic properties of metal-water systems at elevated temperatures[J]. J. Electrochem. Soc., 1978, 125:808-812.
|
[28] |
Anderko A,Shuler P J. A computational approach to predicting the formation of iron sulfide species using stability diagrams[J]. Computers & Geosciences,1997, 23(6):647-658.
|
[29] |
Rickard D,Luther Ⅲ G W. Kinetics of pyrite formation by the H2S oxidation of iron (Ⅱ) monosulfide in aqueous solutions between 25 and 125℃:The mechanism[J]. Geochimica et Cosmochimica Acta, 1997, 61(1):135-147.
|
[30] |
Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (Ⅱ) monosulfide in aqueous solutions between 25 and 125℃:The rate equation[J]. Geochimica et Cosmochimica Acta, 1997, 61(1):115-134.
|
[31] |
Wilkin R T,Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339.
|
[32] |
Butler I B, Böttcher M E, Rickard D,et al. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways:implications for the interpretation of sedimentary and hydrothermal pyrite isotope records[J]. Earth and Planetary Science Letters, 2004, 228:495-509.
|
[33] |
Ono S, Shanks Ⅲ W C, Rouxel O J,et al. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides[J]. Geochimica et Cosmochimica Acta, 2007, 71(5):1170-1182.
|
[1] | FAN Junning, ZENG Zhigang, ZHU Bowen, QI Haiyan. Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 26-36. DOI: 10.16562/j.cnki.0256-1492.2021010201 |
[2] | XU Fen, KANG Jiancheng. The climatological distribution of surface salinity in the East China Sea and adjacent northwest Pacific Ocean during 1981—2010[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 44-60. DOI: 10.16562/j.cnki.0256-1492.2018091701 |
[3] | ZHANG Xianrong, SUN Zhilei, WEI Helong, ZHANG Xilin, WANG Libo. MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32. DOI: 10.16562/j.cnki.0256-1492.2017.02.003 |
[4] | YUAN Xuecheng. OCEAN-CONTINENT COLLISION IN THE WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 41-48. DOI: 10.3724/SP.J.1140.2014.06041 |
[5] | DING Xue, LI Jun, ZHENG Changqing, HUANG Wei, CUI Ruyong, DOU Yanguang, SUN Zhilei. CHEMICAL COMPOSITION OF THE BASALTS ON EAST PACIFIC RISE (1.5°N~1.5°S) AND SOUTH MID-ATLANTIC RIDGE (13.2°S)[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 57-66. DOI: 10.3724/SP.J.1140.2014.05057 |
[6] | PANG Jiehong, LI Sanzhong, DAI Liming, WU Tingting, SUO Yanhui, IODP Expedition 324 Scientific Party. GENESIS OF OCEANIC PLATEAUS AND SEAMOUNTS IN THE PACIFIC OCEAN——A CASE STUDY OF SHATSKY RISE[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 1-10. DOI: 10.3724/SP.J.1140.2011.02001 |
[7] | YANG Dan, HU Chuanyu, YU Peisong, WU Guanghai, NI Jianyu, ZHANG Haisheng, YAO Longkui, LU Bing. A COMPARATIVE STUDY OF THE COMPOSITIONS AND EVOLUTION OF THE LOW-MATURE HYDROCARBON AND THEIR CONTROLLING FACTORS FOR THE CORE SEDIMENTS FROM MID-PACIFIC AND EAST-PACIFIC BASINS[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 99-106. DOI: 10.3724/SP.J.1140.2010.06099 |
[8] | LI Kang, ZENG Zhigang, YIN Xuebo, CHEN Shuai, WANG Xiaoyuan, ZHANG Guoliang, CHEN Daigeng, WANG Xiaomei. MODE OF ELEMENT OCCURRENCE IN SURFACE SEDIMENTS FROM EAST PACIFIC RISE NEAR 13°N AND THE EQUATOR[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 53-60. DOI: 10.3724/SP.J.1140.2009.03053 |
[9] | YUAN Chun-wei, ZENG Zhi-gang, YIN Xue-bo, WANG Xiao-yuan, YU Shao-xiong. SEDIMENT GEOCHEMISTRY FROM 13°N EAST PACIFIC RISE HYDROTHERMAL FIELD[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 45-53. |
[10] | CHEN Zhong, YAN Wen, CHEN Mu-hong, LU Jun, GU Sen-chang. FORMATION OF AUTHIGENIC GYPSUM AND PYRITE ASSEMBLAGE AND ITS SIGNIFICANCE TO GAS VENTINGS IN NANSHA TROUGH,SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 91-100. |