JIA Hongjuan, QIN Xiaoguang, LIU Jiaqi. WHAT CAUSES THE FAKE KURTOSIS AND HOW TO AVOID IT IN GRAIN-SIZE MEASUREMENT[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 145-152. DOI: 10.3724/SP.J.1140.2009.05145
Citation: JIA Hongjuan, QIN Xiaoguang, LIU Jiaqi. WHAT CAUSES THE FAKE KURTOSIS AND HOW TO AVOID IT IN GRAIN-SIZE MEASUREMENT[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 145-152. DOI: 10.3724/SP.J.1140.2009.05145

WHAT CAUSES THE FAKE KURTOSIS AND HOW TO AVOID IT IN GRAIN-SIZE MEASUREMENT

More Information
  • Received Date: February 10, 2009
  • Revised Date: August 09, 2009
  • A false mode>100 μm often occurs in laser grain-size measurement. The causes of the false mode may be that the water amount <800 mL leads to a high liquid viscosity and in turn stirs more bubbles. Another cause may be that larger quantity of a sample may induce a larger shading level of light (>13%) and a higher liquid viscosity in turn may release bubbles with difficulty. An inappropriate pump speed or an ultrasonic dispersion time shorter than 2.5 min also may result in false modes appearing. Several principles to avoid false modes are concluded. The shading level of light (obstruct light) should be 8%~13%. The amount of samples is determined according to their types. The appropriate quantity is~0.1 g for clay samples, 0.2 g for loess and fine silty sand samples, 0.4 g for coarse silty sand samples, 0.6 g for fine sand samples and 1.0 g for sand samples in order to keep the light shading level of 8%~12%. The water amount of~1 000 mL and the ultrasonic dispersion time of>2.5 min before measuring are necessary to eliminate false modes of grain size distribution. For clay or fine silty sand (median size<10 μm), false modes may occur even though water amount is more than 1 000 mL. In the case, false modes can be identified and eliminated by changing stir speed. The mode whose median size is>100 μm and does not occur in all conditions may be a false mode. The false mode may disappear when the stir speed is reduced to 2 000 for a sample with lower light shading level. The false mode may disappear when the stir speed is increased to 3 200 for a sample with higher light shading level.
  • [1]
    Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea:the geologic history of wind[J]. Reviews of Geophysics, 1994, 32:159-195.
    [2]
    Sarnthein M, Tetzlaff G, Koopmann B,et al. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa[J]. Nature, 1981, 293:193-196.
    [3]
    郑洪波,陈国成,谢昕,等.南海晚第四纪陆源沉积:粒度组成、动力控制及反映的东亚季风演化[J].第四纪研究,2008, 28(3):414-424.

    [ZHENG Hongbo, CHEN Guocheng, XIE Xin,et al. Grain size distribution and dynamic control of late Quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution[J]. Quaternary Sciences, 2008, 28(3):414-424.]
    [4]
    于学峰,周卫健,刘晓清,等.青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义[J].沉积学报,2006, 24(6):864-869.

    [YU Xuefeng; ZHOU Weijian; LIU Xiaoqing, et al. Grain size characteristics of the Holocene peat sediment in eastern Tibetan plateau and its paleoclimatic significance[J]. Acta Sedimentologica Sinica, 2006, 24(6):864-869.]
    [5]
    孙东怀,鹿化煜.晚新生代黄土高原风尘序列的粒度和沉积速率与中国北方大气环流演变[J].第四纪研究,2007,27(2):251-262.

    [SUN Donghuai,LU Huayu.Grain-size and dust accumulation rate of late Cenozoic aeolian deposits and the inferred atmospheric circulation evolutions[J]. Quaternary Sciences, 2007, 27(2):251-262.]
    [6]
    熊尚发,刘东生,丁仲礼.两个冰期间冰期旋回的黄土记录及其古气候意义[J].地理科学,22(1):18-23.[XIONG Shangfa, LIU Tungsheng, DING Zhongli. Paleoclimatic records of the loess in the vicinity of Beijing region during the last two glacial-interglacial cycles and its implication[J]. Scientia Geographica Sinica, 22

    (1):18-23.]
    [7]
    Govert N, Vandenberghe J, Huissteden J, et al. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China[J]. Global and Planetary Change, 2004, 41:167-183.
    [8]
    Govert N, Vandenberghe J. Spatial climatic variability on the Central Loess Plateau (China) as recorded by grain size for the last 250 kyr[J]. Global and Planetary Change, 2004, 41:185-206.
    [9]
    Prinsa M A, Mirjam V, Govert N, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau:inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26:230-242.
    [10]
    Ding Z L, Rutter N W, Sun J M, et al. Re-arrangement of atmospheric circulation at about 2. 6 Ma over northern China:from grain size records of loess-palaeosol and red clay sequences[J]. Quaternary Science Reviews, 2000, 19:547-558.
    [11]
    Lu H Y, Vandenberghe J, An Z S. Aeolian origin and palaeoclimatic implications of the Red Clay' (north China) as evidenced by grain-size distribution[J]. Journal of Quaternary Science, 2001, 16(1):89-87.
    [12]
    孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质,2001,21(1):93-95.

    [SUN Qianli, ZHOU Jie, XIAO Jule. Grain size characteristics of Lake Daihai sediments and its paleoenvironment significance[J].Marine Geology and Quaternary Geology, 2001, 21(1):93-95.]
    [13]
    黄小忠,陈发虎,肖舜,等.新疆博斯腾湖沉积物粒度的古环境意义初探[J].湖泊科学,2008,20(3):291-297.

    [HUANG Xiaozhong,CHEN Fahu, XIAO Shun, et al. Primary study on the environmental significances of grain-size changes of the lake Bosten sediments[J]. Journal of Lake Sciences, 2008, 20(3):291-297.]
    [14]
    鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究[J].科学通报,1997,42(23):2535-2538.

    [LU Huayu, AN Zhisheng. The research of pretreatment methods and their influences on grain size measurement of loess[J]. Chinese Science Bulletin,1997, 42(23):2535-2538.]
    [15]
    孙有斌,高抒,鹿化煜.前处理方法对北黄海沉积物粒度的影响[J].海洋与湖沼,2001,32(6):665-671.

    [SUN Youbin, GAO Shu, LU Huayu. Influence of different pretreatment procedures on the particle-size distribution of surficial sediments in the Northern Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2001, 32(6):665-671.]
    [16]
    鹿化煜,苗晓东,孙有斌.前处理步骤与方法对风成红粘土粒度测量的影响[J].海洋地质与第四纪地质,2002,22(3):129-135.

    [LU Huayu, MIAO Xiaodong, SUN Youbin. Pretreatment methods and their influences on grain size measurement of aeolian "red clay" in North China[J]. Marine Geology and Quaternary Geology, 2002, 22(3):129-135.]
    [17]
    王德杰,范代读,李从先.不同预处理对沉积物粒度分析结果的影响[J].同济大学学报,2003,31(3):314-318.

    [WANG Dejie, FAN Daidu, LI Congxian. Influence of different pretreatments on size analysis and its implication[J]. Journal of Tongji University, 2003, 31(3):314-318.]
    [18]
    王君波,朱立平.不同前处理对湖泊沉积物粒度测量结果的影响[J].湖泊科学,2005,17(1):17-23.

    [WANG Junbo, ZHU Liping. Influence of different pretreatments on grain-size measurement of lake sediments[J]. Journal of Lake Sciences, 2005, 17(1):17-23.]
    [19]
    杨玉颖,张学文,赵红,等.粒度分析样品分散条件的研究[J].建筑材料学报,2002,5(2):198-201.

    [YANG Yuying, ZHANG Xuewen, ZHAO Hong, et al. Effect of sample dispersing condition on particle size analysis[J]. Journal of Building Material, 2002, 5(2):198-201.]
    [20]
    张红艳,鹿化煜,赵军,等.超声波振荡对细颗粒黄土样品粒度测量影响的实验分析[J].沉积学报,2008,26(3):494-500.

    [ZHANG Hongyan, LU Huayu, ZHAO Jun, et al. Effects of ultrasonic dispersion on granulometry of fine-grain loess[J]. Acta Sedimentologica Sinica, 2008,26(3):494-500.]
    [21]
    王君波,鞠建廷,朱立平.两种激光粒度仪测量湖泊沉积物粒度结果的对比[J].湖泊科学,2007,19(5):509-515.

    [WANG Junbo,JU Jianting,ZHU Liping. Comparison of lake sediment grain size results measured by two laser diffraction particle size analysis[J]. Journal of Lake Sciences, 2007, 19(5):509-515.]
    [22]
    费祥俊.黄河中下游含沙水流粘度的计算模型[J].泥沙研究,1991(2):1-12.[FEI Xiangjun. A model for calculating viscosity of sediment carrying flow in the Middle Lower Yellow River[J]. Journal of Sediment Research, 1991

    (2):1-12.]
  • Related Articles

    [1]ZHANG Ying, LIU Zhifeng, GUO Gang, ZHU Wenqi, CHEN Shaoping, WANG Tao. Analysis of main controlling factors of hydrocarbon accumulation in Qinnan Depression, Bohai Bay[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 157-168. DOI: 10.16562/j.cnki.0256-1492.2023040301
    [2]XIA Zailian, HUA Caixia, LIU Jiyong, YU Hao. Favorable Lower Paleozoic exploration targets in the Lower Yangtze region[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 66-74. DOI: 10.16562/j.cnki.0256-1492.2018.03.006
    [3]ZHANG Minqiang, GAO Shunli, TAN Sizhe. Geological characteristics of the Meso-Paleozoic in South Yellow Sea Basin and future exploration[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 24-34. DOI: 10.16562/j.cnki.0256-1492.2018.03.002
    [4]ZHANG Qiang, LV Fuliang, HE Xiaosu, WANG Bin, MAO Chaolin. CHARACTERISTICS OF PETROLEUM ACCUMULATIONS IN THE SOUTH CHINA SEA AND THEIR EXPLORATION POTENTIAL[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 158-167. DOI: 10.16562/j.cnki.0256-1492.2017.06.017
    [5]LI Xiaotang, HE Jiaxiong, ZHANG Wei. THE SYNTHETIC EVALUATION OF PALEOGENE AND NEOGENE SOURCE ROCKS AND THE FAVORABLE EXPLORATION TARGET IN YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 129-142. DOI: 10.16562/j.cnki.0256-1492.2016.02.015
    [6]HU Yang, ZHANG Wei, ZHANG Jingru, GONG Xiaofeng, LI Xiaotang, LIU Zhijie. THE FAVORABLE PETROLEUM ACCUMULATION BELTS AND EXPLORATION TARGETS IN QIONGDONGNAN BASIN ON THE MARGIN OF NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 73-86. DOI: 10.16562/j.cnki.0256-1492.2015.04.008
    [7]GONG Xiaofeng, HE Jiaxiong, WU Congkang, YANG Jun, LI Kui, ZHANG Yang, LI Duohua, ZHU Jiancheng. BASIC GEOLOGICAL AND GEOCHEMICAL BACKGROUND OF UNCONVENTIONAL GAS RESOURCES IN CHINA[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 95-105. DOI: 10.3724/SP.J.1140.2014.05095
    [8]ZENG Xiaoming, YU Xinghe, LIANG Jinqiang, KUANG Zenggui, WANG Jianzhong. GEOLOGICAL MODEL AND PREDICTION FOR FAVORABLE AREAS OF NATURAL GAS HYDRATE IN SHENHU AREA[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 117-126. DOI: 10.3724/SP.J.1140.2014.04117
    [9]LIU Yonggang, DU Dewen, QU Jingru, YAN Shijuan, WANG Chunjuan, SHI Xuefa. QUANTITATIVE ASSESSMENT OF POLYMETALLIC NODULES RESOURCE OF CC ZONE BASED ON FUZZY ARTMAP[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 169-179. DOI: 10.3724/SP.J.1140.2013.02169
    [10]YE Jia ren, GU Hui-rong, JIA Jian-yi. PETROLEUM GEOLOGICAL CONDITION AND EXPLORATION POTENTIAL OF XIHU DEPRESSION, EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 111-116. DOI: 10.3724/SP.J.1140.2008.03111

Catalog

    Article views (1987) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return