Citation: | LIU Xiaoyan, YUAN Sihua, XU Hai. RECENT RESEARCH PROGRESS IN OXYGEN-ISOTOPE PALEOALTIMETRY[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 139-147. DOI: 10.3724/SP.J.1140.2009.02139 |
[1] |
Sahagian D L, Maus J E. Basalt vesicularity as a measure of atmosphere pressure and paleoelevation[J]. Nature, 1994, 372:449-452.
|
[2] |
Brook E J, Brown E T, Kurz M D, et al. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al[J]. Geology, 1995, 23(12):1063-1066.
|
[3] |
Forest C E, Wolfe J A, Molnar P, et al. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate[J]. Geological Society of America Bulletin, 1999, 111(4):497-511.
|
[4] |
Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421:622-625.
|
[5] |
Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2000, 183:215-229.
|
[6] |
Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau:paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 2000, 28:339-342.
|
[7] |
Poage M A, Chamberlain C P. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters:considerations for studies of paleoelevation change[J]. American Journal of Science, 2001, 301:1-15.
|
[8] |
Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188:253-268.
|
[9] |
Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439:677-682.
|
[10] |
Rowley D B, Garzione C N. Stable isotope-based Paleoaltimetry[J]. Annual Review of Earth and Planetary Science, 2007, 35:463-508.
|
[11] |
Mulch A, Chamberlain C P. The rise and growth of Tibet[J]. Nature, 2006, 439:670-671.
|
[12] |
吴珍汉, 赵逊, 叶培盛, 等. 根据湖相沉积碳氧同位素估算青藏高原古海拔高度[J]. 地质学报, 2007, 81(9):1277-1289.
[WU Zhenhan, ZHAO Xun, YE Peisheng, et al. Paleo-elevation of the Tibetan Plateau inferred from Carbon and oxygen isotopes of lacustrine deposits[J]. Acta Geologica Sinica, 2007, 81(9):1277-1289.]
|
[13] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 14(4):436-468.
|
[14] |
Drummond C N, Wilkinson B H, Lohmann K C, et al. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 101:67-79.
|
[15] |
Siegenthaler U, Oeschger H. Correlation of 18O in precipitation with temperature and altitude[J]. Nature, 1980, 285:314-317.
|
[16] |
Chamberlain C P, Poage M A. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals[J]. Geology, 2000, 28(2):115-118.
|
[17] |
于津生, 张鸿斌, 虞福基, 等. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 1980, 2:113-121.[YU Jinsheng, ZHANG Hongbin, YU Fuji, et al. Oxygen isotopic composition of meteoric water in the eastern part of Xizang[J]. Geochemistry, 1980
, 2:113-121.]
|
[18] |
田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部降水稳定同位素变化与季风活动[J]. 地球化学, 2001, 30(3):217-223.
[TIAN Lide, YAO Tandong, SUN Weizhen, et al. Stable isotope variation of precipitation in the middle of Qinghai-Xizang Plateau and monsoon activity[J]. Geochemistry, 2001, 30(3):217-223.]
|
[19] |
张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17(5):738-747.
[ZHANG Yinghua,WU Yanqing,WEN Xiaohu, et al. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 2006, 17(5):738-747.]
|
[20] |
姚檀栋, 孙维贞, 蒲健辰, 等. 内陆河流域系统降水中的稳定同位素——乌鲁木齐河流域降水中δ18O与温度关系研究[J]. 冰川冻土, 2000, 22(1):15-22.
[YAO Tandong, SUN Weizhen, PU Jianchen, et al. Characteristics of stable isotope in precipitation in the inland area-A case study of the relation between δ18O in precipitation and temperature in ürumqi River, China[J]. Journal of Glaciology and Geocryology, 2000, 22(1):15-22.]
|
[21] |
Ingraham N L, Taylor B E. Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada[J]. Water Resource Research, 1991, 1(27):77-90.
|
[22] | 章新平, 中尾正义, 藤田耕史, 等. 喜马拉雅山朗塘流域降水中18O比值的变化[J]. 中国科学(D辑), 2001, 31(3):206-214.[ZHANG Xinping, Masayoshi Nakawo, Fujita Koji, et al. Change of 18O ratio in Langtang drainage area of Himalayas[J]. Science in China (Series D), 2001, 31(3):206-214.] |
[23] |
Peixoto J P, Oort A H. The atmospheric branch of the hydrological cycle and climate[C]//Variations in the Global Water Budget, ed. A. Street. Reidel. 1983:5-65.
|
[24] |
刘进达, 刘恩凯, 赵迎昌, 等. 影响中国大气降水稳定同位素组成的影响因素分析[J]. 勘察科学技术, 1997(4):14-18.[LIU Jinda, LIU Enkai, ZHAO Yingchang, et al. Analysis of the chief factors influencing the stability isotope composition of China atmosphere precipitation[J]. Technology of Survey Science, 1997
(4):14-18.]
|
[25] |
Ingraham N L, Lyles B, Jacobson R L. Stable isotopic study of precipitation and spring discharge in southern Nevada[J]. Journal of Hydrology, 1991, 125:243-258.
|
[26] |
章新平, 姚檀栋. 全球降水中氧同位素比率的分布特点[J]. 冰川冻土, 1994, 16(3):202-210.
[ZHANG Xinping, YAO Tandong. World spatial characteristics of oxygen isotope ratio in precipitation[J]. Journal of Glaciology and Geocryology, 1994, 16(3):202-210.]
|
[27] |
章新平, 姚檀栋. 青藏高原现代降水中dδ18O/dT的变化[J]. 冰川冻土, 1995, 17(4):308-314.
[ZHANG Xinping, YAO Tandong. Variation of dδ18O/dT in precipitation in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1995, 17(4):308-314.]
|
[28] |
Tandong Y, Thompson L G, Thompson E M, et al. Climatological significance of δ18O in north Tibetan ice cores[J]. Journal of Geophysical Research, 1997, 101:29531-29537.
|
[29] |
田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化[J]. 冰川冻土, 2000, 22(2):159-164.
[TIAN Lide, YAO Tandong, SUN Weizhen, et al. Study on stable isotope fractionation during water evaporation in the middle of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2000, 22(2):159-164.]
|
[30] |
章新平, 姚檀栋, 中尾正义, 等. 青藏高原及其毗邻地区降水中稳定同位素成分的经向变化[J]. 冰川冻土, 2002, 24(3):245-253.
[ZHANG Xinping, YAO Tandong, Masayoshi Nakawo, et al. Meridianal variation of stable isotopic compositions in precipitation of the Tibetan Plateau and its adjacent regions[J]. Journal of Glaciology and Geocryology, 2002, 24(3):245-253.]
|
[31] |
章新平, 姚檀栋, 田立德, 等. 湿度效应及其对降水中δ18O季节分布的影响[J]. 冰川冻土, 2004, 26(4):420-426.
[ZHANG Xinping, YAO Tandong, TIAN Lide, et al. Humidity effect and its influence on seasonal distribution of δ18O in precipitation[J]. Journal of Glaciology and Geocryology, 2004, 26(4):420-426.]
|
[32] |
张东启, 秦大河, 侯书贵, 等. 珠穆朗玛峰东绒布80.36 m冰芯δ18O记录的气候意义[J]. 中国科学D辑, 2003, 33(3):264-270.
[ZHANG Dongqi, QIN Dahe, HOU Shugui, et al. Climate significance of the δ18O record in 80.36 m long East Rongbuk Glacier in Everest[J]. Science in China (Series D), 2003, 33(3):264-270.]
|
[33] |
Dettman D L, Lohmann K C. Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene[J]. Geology, 2000, 28(3):243-246.
|
[34] |
Drummond C N, Wilkinson B H, Lohmann K C. Rock dominate diagenesis of lacustrine magnesian calcite micrite[J]. Carbonates Evaporites, 1993, 8:214-223.
|
[35] |
Dettman D L, Reische A K, Lohmann K C. Controls on the stable isotope composition of seasonal growth bands in aragonite fresh-water bivalves (Unionidae)[J]. Geochim. Cosmochim. Acta, 1999, 63:1049-1057.
|
[36] |
Dettman D L, Fang X M, Garzione C N. Uplift-driven climate change at 12 Ma:A long δ18O record from the NE margin of the Tibetan Plateau[J]. Earth and Planet Science Letter, 2003, 214:267-277.
|
[37] |
Cyr A J, Currie B S, Rowley D B. Geochemical and stable isotopic evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet:Implications for the paleoaltimetry of Late Eocene Tibetan Plateau[J]. Geology, 2005, 113:517-533.
|
[38] |
Mulch A, Graham S A, Chamberlain C P. Hydrogen isotopes in Eocene River Gravels and paleoelevation of the Sierra Nevada[J]. Science, 2006, 313:87-89.
|
[39] |
Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255:1663-1670.
|
[40] |
Molnar P, England P, Martiod J. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development[J]. Reviews of Geophysics, 1993, 34:357-396.
|
[41] |
李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1):1-12.
[LI Jijun. Studies on the geomorphological evolution of the Qinghai-Xizang(Tibetan) Plateau and Asian monsoon[J]. Marine Geology and Quaternary Geology, 1999, 19(1):1-12.]
|
[42] |
施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54(1):10-21.
[SHI Yafeng, LI Jijun, LI Bingyuan, et al. Uplift of the Qinghai-Xizang(Tibetan) Plateau and East Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1):10-21.]
|
[43] |
Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(1):50-54.
|
[44] |
徐仁, 陶君容, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15(1):103-119.
[XU Ren, TAO Junrong, SUN Xiangjun. On the discovery of a Quercus Semicarpifolia bed in Mount Xixiabangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15(1):103-119.]
|
[45] |
施雅风, 刘东生. 希夏邦马峰科学考察初步报告[J]. 科学通报, 1964, 10:928-938.[SHI Yafeng, LIU Tungsheng. Initial report of scientific exploration of the Mount Xixiabangma[J]. Chinese Science Bulletin, 1964
, 10:928-938.]
|
[46] |
Broccoli A J, Manabe S. The effects of orography on mid latitute Northern Hemisphere dry climates[J]. Journal of Climate, 1992, 5:1181-1201.
|
[47] |
Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. Journal of Geology, 1993, 101:177-190.
|
[48] |
An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.
|
[49] |
Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877):159-163.
|
[50] |
吴珍汉, 吴中海, 胡道功, 等. 青藏高原腹地中新世早期古大湖的特征及其构造意义[J]. 地质通报, 2006, 25(7):782-791.
[WU Zhenhan, WU Zhonghai, HU Daogong, et al. Features of early Miocene large paleolakes in the interior of the Qinghai-Tibet Plateau and their tectonic significance[J]. Geological Bulletin of China, 2006, 25(7):782-791.]
|
[51] |
Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogen[J]. Geology, 2005, 33(3):181-184.
|
[52] |
Quade J, Cerling T E, Bowman J R. Development of Asian Monson revealed by marked ecological shift during the latest Miocene in Northern Pakistan[J]. Nature, 1989, 342:163-166.
|
[53] |
Quade J, Cerling T E. Expansion of C4 grasses in the late Miocene of Northern Pakistan:evidence from stable istopoes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115:91-116.
|
[54] | 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 1996, 26(4):289-295.[ZHONG Dalai, DING Lin. Mechanism discuss and uplifting process of Tibet Plateau[J]. Science in China (Series D), 1996, 26(4):289-295.] |
[55] |
张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合[J]. 地球科学——中国地质大学学报, 2007, 32(5):587-602.
[ZHANG Kexin,WANG Guocan, CHEN Fenning, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(5):587-602.]
|
[56] |
潘桂棠, 王培生, 徐耀荣, 等. 青藏高原新生代构造演化[M]. 北京:地质出版社,1990.[PAN Guitang, WANG Peisheng, XU Yaorong, et al. Tectonic Evaluation of Qinghai-Xizang Plateau in the Cenozoic[M]. Beijing:Geological Publishing House,1990.]
|
[57] |
孙鸿烈, 郑度. 青藏高原形成演化与发展[M]. 广州:广东科技出版社,1998.[SUN Honglie, ZHENG Du. Formation, Evolution and Development of Qinghai-Xizang Plateau[M]. Guangzhou:Guangdong Sceince & Technolgy Press, 1998.]
|
[58] |
肖序常, 李廷栋. 青藏高原的构造演化与隆升机制[M]. 广州:广东科学技术出版社,2000:191-232.[XIAO Xuchang, LI Tingdong. Tectonic Evaluation and Uplift Mechanism of Qinghai-Xizang Plateau[M]. Guangzhou:Guangdong Sceince & Technolgy Press, 2000:191
-232.]
|
[59] |
Tapponnier P, Zhiqin X, Roger F. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294:1671-1677.
|
[60] | 李吉均, 文世宣, 张青松. 青藏高原隆升的时代、幅度和形式探讨[J]. 中国科学(B辑), 1979, 9(6):608-616.[LI Jijun, WEN Shixuan, ZHANG Qingsong. A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau[J]. Science in China (Series B), 1979, 9(6):608-616.] |
[61] |
Garzione C N, Dettmanc D L, Hortone B K. Carbonate oxygen isotope paleoaltimetry:evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212:119-140.
|
[62] |
Ghosh P, Adkins J, Affek H, et al. 13C -18O bonds in carbonate minerals:a new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):39-56.
|
[63] |
Garzione C N, Molnar P, Libarkin J C, et al. Rapid late Miocene rise of the Bolivian Altiplano:evidence for removal of mantle lithosphere[J]. Earth and Planet Science Letter, 2006, 241:543-556.
|
[64] |
Ghosh P, Garzione C N, Eiler J M. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates[J]. Science, 2006, 311(51):1-15.
|