WU Yixiao,WU Jun,CHEN Shuangxi,et al. Preliminary application of palynological quantitative method in the reconstruction of Quaternary paleoclimate in Dongting Basin[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024092701
Citation: WU Yixiao,WU Jun,CHEN Shuangxi,et al. Preliminary application of palynological quantitative method in the reconstruction of Quaternary paleoclimate in Dongting Basin[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024092701

Preliminary application of palynological quantitative method in the reconstruction of Quaternary paleoclimate in Dongting Basin

More Information
  • Received Date: September 26, 2024
  • Revised Date: January 26, 2025
  • Accepted Date: January 26, 2025
  • Available Online: March 23, 2025
  • Quaternary climate change has been currently one of the research hotspots in geoscience. Dongting Basin in the middle reaches of the Changjiang (Yangtze) River is one of the most representative Quaternary sedimentary basins in South China. Its paleoclimate records are of great significance for understanding regional and global climate evolution. However, available studies still face limitations in temporal resolution and regional comparability. We utilized pollen data from the ZKC01 borehole in Lianghu Village, Changde, Hunan Province, for quantitative analysis in the Modern Analogue Technique (MAT), to reconstruct the paleotemperature and paleoprecipitation sequences of the basin during the Quaternary. Results indicate that the Quaternary climate of the basin underwent significant phased changes, including the Plio-Pleistocene intensification of Northern Hemisphere glaciation (iNHG, approximately 2.6~2.5 Ma), an early Pleistocene arid period (approximately 2.6~2.2 Ma), two superinterglacial periods during the Gelasian and Calabrian stages (approximately 2.2~2.0 Ma and 1.6~1.5 Ma, respectively), and the Zhonglianggan Glaciation and the Last Glaciation. These findings not only refine the high-resolution record of Quaternary paleoclimate evolution in Dongting Basin but also provide critical insights into the response mechanisms of regional climate to global changes.

  • [1]
    柏道远, 李长安. 洞庭盆地第四纪地质研究现状[J]. 地质科技情报, 2010, 29(5):1-8,14

    BAI Daoyuan, LI Chang’an. Status of Quaternary geology research of Dongting Basin[J]. Geological Science and Technology Information, 2010, 29(5):1-8,14.]
    [2]
    蔡述明, 官子和, 孔昭宸, 等. 从岩相特征和孢粉组合探讨洞庭盆地第四纪自然环境的变迁[J]. 海洋与湖沼, 1984, 15(6):527-539

    CAI Shuming, GUAN Zihe, KONG Zhaochen, et al. Natural environment as reflected in sedimentary facies and sporo-pollen assemblages in Dongting Basin in Quaternary[J]. Oceanologia et Limnologia Sinica, 1984, 15(6):527-539.]
    [3]
    陈建成, 柏道远, 李长安, 等. 洞庭盆地中更新世洞庭湖组砾石特征及其意义[J]. 华南地质与矿产, 2010(4):16-22

    CHEN Jiancheng, BAI Daoyuan, LI Chang’an, et al. Statistics of gravel particle size and shape features of Middle Pleistocene Dongtinghu Formation in Dongting Basin, and its tectonic and environmental significances[J]. Geology and Mineral Resources of South China, 2010(4):16-22.]
    [4]
    景存义. 洞庭湖的形成与演变[J]. 南京师大学报: 自然科学版, 1982(2):52-60

    JING Cunyi. Formation and evolution of the Dongting Basin[J]. Journal of Nanjing Normal University: Natural Science Edition, 1982(2):52-60.]
    [5]
    柏道远, 李长安, 陈渡平, 等. 洞庭盆地第四纪气候演变的沉积物地球化学记录[J]. 山东科技大学学报: 自然科学版, 2012, 31(2):1-9

    BAI Daoyuan, LI Chang’an, CHEN Duping, et al. Geochemical recording of sediments responding to the Quaternary climatic evolution in Dongting Basin[J]. Journal of Shandong University of Science and Technology: Natural Science, 2012, 31(2):1-9.]
    [6]
    张建新, 申志军, 顾海滨, 等. 洞庭湖区第四纪环境地球化学[M]. 北京: 地质出版社, 2007

    ZHANG Jianxin, SHEN Zhijun, GU Haibin, et al. Quaternary Environmental Geochemistry in Dongting Lake Area[M]. Beijing: Geological Publishing House, 2007.]
    [7]
    柏道远, 李长安, 陈渡平, 等. 化学风化指数和磁化率对洞庭盆地第四纪古气候变化的响应[J]. 中国地质, 2011, 38(3):779-785

    BAI Daoyuan, LI Chang’an, CHEN Duping, et al. Chemical weathering index and magnetic susceptibility of deposits and their responses to the Quaternary climate in Dongting Basin[J]. Geology in China, 2011, 38(3):779-785.]
    [8]
    来红州, 莫多闻, 李新坡. 洞庭盆地第四纪红土地层及古气候研究[J]. 沉积学报, 2005, 23(1):130-137

    LAI Hongzhou, MO Duowen, LI Xinpo. Research on the Quaternary laterite and paleoclimate in the Dongting Basin[J]. Acta Sedimentologica Sinica, 2005, 23(1):130-137.]
    [9]
    谭志海, 龙艳侠, 毛龙江, 等. 洞庭盆地末次冰期中晚期以来黑褐色土壤剖面野火记录及气候关联[J]. 首都师范大学学报: 自然科学版, 2017, 38(4):77-84

    TAN Zhihai, LONG Yanxia, MAO Longjiang, et al. Records of the dark brown soil profile by charcoal and black carbon (char and soot) sedimentary archives from Dongting Basin since the middle–late last glacial period[J]. Journal of Capital Normal University: Natural Science Edition, 2017, 38(4):77-84.]
    [10]
    柏道远, 李长安, 张文卿, 等. 洞庭盆地两护村孔孢粉组合及其气候与地层意义[J]. 地质科学, 2010, 45(4):1125-1138

    BAI Daoyuan, LI Chang’an, ZHANG Wenqing, et al. Sporopollen assemblages of the core from Lianghucun borehole in Dongting Basin and their climatic and stratigraphic implications[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2010, 45(4):1125-1138.]
    [11]
    李俊, 王淑云, 莫多闻. 6000 aBP以来洞庭湖沉积记录的环境演变及其同人类活动的关系[J]. 北京大学学报: 自然科学版, 2011, 47(6):1041-1048

    LI Jun, WANG Shuyun, MO Duowen. Environmental changes and relationships with human activities of Dongtinghu plain since 6000 aBP[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(6):1041-1048.]
    [12]
    向轲, 刘庚寅, 魏方辉, 等. 洞庭盆地安乡凹陷CZ04孔第四纪孢粉记录及其古环境意义[J]. 华南地质与矿产, 2020, 36(2):104-116

    XIANG Ke, LIU Gengyin, WEI Fanghui, et al. Quaternary palynological record from the borehole CZ04 in the Anxiang Sag of the Dongting Basin and its palaeoenvironmental significance[J]. Geology and Mineral Resources of South China, 2020, 36(2):104-116.]
    [13]
    杨达源, 韩辉友, 吴新哲. 气候变化对荆江变迁的影响[M]//杨怀仁, 唐日长. 长江中游荆江变迁研究. 北京: 中国水利水电出版社, 1999: 159-177

    YANG Dayuan, HAN Huiyou, WU Xinzhe. Influences of climatic change on variation of Jinjiang river[M]//YANG Huairen, TANG Richang. Studies on the Variation of Jinjiang of the Middle Yangtze River. Beijing: China Water Power Press, 1999: 159-177.]
    [14]
    胡济民, 曾德敏. 洞庭湖盆地白垩纪早第三纪的岩石地层与生物地层[J]. 湖南地质, 1996, 15(4):193-197

    HU Jimin, ZENG Demin. Petrostratigraphy and biostratigraphy of Cretaceous–Early Tertiary periods in Dongting Basin[J]. Hunan Geology, 1996, 15(4):193-197.]
    [15]
    赵琳, 曾瑶瑶, 杨祎琪, 等. 洞庭湖流域全新世孢粉记录的植被、气候变化及人类活动[J]. 第四纪研究, 2024, 44(3):780-792

    ZHAO Lin, ZENG Yaoyao, YANG Yiqi, et al. Holocene palynological records of vegetation, climate change and human activities in the Dongting Lake watershed[J]. Quaternary Sciences, 2024, 44(3):780-792.]
    [16]
    杜耘, 殷鸿福. 洞庭湖历史时期环境研究[J]. 地球科学-中国地质大学学报, 2003, 28(2):214-218

    DU Yun, YIN Hongfu. Study on historical environment in Dongting Lake area[J]. Earth Science-Journal of China University of Geosciences, 2003, 28(2):214-218.]
    [17]
    张晓阳, 蔡述明, 孙顺才. 全新世以来洞庭湖的演变[J]. 湖泊科学, 1994, 6(1):13-21 doi: 10.18307/1994.0102

    ZHANG Xiaoyang, CAI Shuming, SUN Shuncai. Evolution of Dongting lake since Holocene[J]. Journal of Lake Sciences, 1994, 6(1):13-21.] doi: 10.18307/1994.0102
    [18]
    赵成双苹, 莫多闻. 长江中游江汉-洞庭盆地全新世以来水文环境演变与人类活动[J]. 地理学报, 2020, 75(3):529-543

    ZHAO Chengshuangping, MO Duowen. Holocene hydro-environmental evolution and its impacts on human activities in Jianghan-Dongting Basin, middle reaches of the Yangtze River, China[J]. Acta Geographica Sinica, 2020, 75(3):529-543.]
    [19]
    柏道远, 王先辉, 李长安, 等. 洞庭盆地第四纪构造演化特征[J]. 地质论评, 2011, 57(2):261-276

    BAI Daoyuan, WANG Xianhui, LI Chang’an, et al. Characteristics of Quaternary tectonic evolution in Dongting Basin[J]. Geological Review, 2011, 57(2):261-276.]
    [20]
    梁杏, 张人权, 皮建高, 等. 洞庭盆地第四纪构造活动特征[J]. 地质科技情报, 2001, 20(2):11-14

    LIANG Xing, ZHANG Renquan, PI Jiangao, et al. Characteristics of tectonic movement of Dongting Basin in the Quaternary period[J]. Geological Science and Technology Information, 2001, 20(2):11-14.]
    [21]
    柏道远, 李长安, 周柯军, 等. 第四纪洞庭盆地赤山隆起与安乡凹陷升降运动的沉积记录[J]. 沉积学报, 2010, 28(4):645-658

    BAI Daoyuan, LI Chang’an, ZHOU Kejun, et al. Geological characteristics and tectonic-sedimentary coupling relation of the Chishan uplift and Anxiang sag of Quaternary Dongting Basin[J]. Acta Sedimentologica Sinica, 2010, 28(4):645-658.]
    [22]
    张国梁, 皮建高, 黄小芳, 等. 湖南省洞庭湖盆地第四纪地质研究报告[R]. 1990: 1-158

    ZHANG Guoliang, PI Jiangao, HUANG Xiaofang, et al. Report on Quaternary geology of Dongting Lake Basin, Hunan province[R]. 1990: 1-158.]
    [23]
    柏道远. 洞庭盆地第四纪地质环境演化[D]. 中国地质大学博士学位论文, 2010

    BAI Daoyuan. Quaternary geological and environmental evolution of the Dongting basin[D]. Doctor Dissertation of China University of Geosciences, 2010.]
    [24]
    赵举兴, 李长安, 张玉芬, 等. 洞庭盆地S3-7孔第四纪年代地层[J]. 地球科学, 2016, 41(4):633-643

    ZHAO Juxing, LI Chang’an, ZHANG Yufen, et al. Quaternary chronostratigraphy of borehole S3-7 in Dongting Basin[J]. Earth Science, 2016, 41(4):633-643.]
    [25]
    张睿, 王乐扬, 曾春芬, 等. 1960–2022年洞庭湖流域气温和降水时空演变特征[J]. 华北水利水电大学学报: 自然科学版, 2024, 35(4):38-46

    ZHANG Rui, WANG Yueyang, ZENG Chunfen, et al. Spatial-temporal evolution of temperature and precipitation in Dongting Lake Basin during 1960–2022[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2024, 35(4):38-46.]
    [26]
    张新时. 中华人民共和国植被图(1∶1 000 000)[M]. 北京: 地质出版社, 2006

    ZHANG Xinshi. Vegetation Map of the People’s Republic of China (1∶1 000 000)[M]. Beijing: Geological Publishing House, 2006.]
    [27]
    彭德纯, 袁正科, 彭光裕, 等. 湖南省洞庭湖区的植被特点及分布规律[J]. 中南林学院学报, 1984, 4(2):110-119

    PENG Dechun, YUAN Zhengke, PENG Guangyu, et al. Characteristics and distribution patterns of the vegetation in the Dongting Lake region, Hunan Province[J]. Journal of Central-South Forestry College, 1984, 4(2):110-119.]
    [28]
    侯志勇, 谢永宏, 赵启鸿, 等. 洞庭湖湿地植物资源现状及保护与可持续利用对策[J]. 农业现代化研究, 2013, 34(2):181-185

    HOU Zhiyong, XIE Yonghong, ZHAO Qihong, et al. Status, utilization and conservation of plant resources in Dongting Lake wetlands[J]. Research of Agricultural Modernization, 2013, 34(2):181-185.]
    [29]
    Dean W E, Kennett J P, Behl R J, et al. Abrupt termination of marine isotope stage 16 (Termination VII) at 631.5 ka in Santa Barbara Basin, California[J]. Paleoceanography, 2015, 30(10):1373-1390. doi: 10.1002/2014PA002756
    [30]
    Ehlers J, Gibbard P L, Hughes P D. Quaternary glaciations and chronology[M]//Menzies J, van der Meer J J M. Past Glacial Environments. 2nd ed. Amsterdam: Elsevier, 2018: 77-101.
    [31]
    Bailey I, Liu Q S, Swann G E A, et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation[J]. Earth and Planetary Science Letters, 2011, 307(3-4):253-265. doi: 10.1016/j.jpgl.2011.05.029
    [32]
    Meyers S R, Hinnov L A. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise[J]. Paleoceanography, 2010, 25(3):PA3207.
    [33]
    Sun Y B, An Z S. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D23):D23101.
    [34]
    张威, 刘蓓蓓, 崔之久, 等. 中国第四纪冰川作用与深海氧同位素阶段的对比和厘定[J]. 地理研究, 2013, 32(4):628-637

    ZHANG Wei, LIU Beibei, CUI Zhijiu, et al. Division of glaciation and correlation between the Quaternary glaciation in China and the marine isotope stage[J]. Geographical Research, 2013, 32(4):628-637.]
    [35]
    Melles M, Brigham-Grette J, Minyuk P S, et al. 2.8 Million years of Arctic climate change from Lake El’gygytgyn, NE Russia[J]. Science, 2012, 337(6092):315-320. doi: 10.1126/science.1222135
    [36]
    李凤全, 叶玮, 朱丽东, 等. 第四纪网纹红土的类型与网纹化作用[J]. 沉积学报, 2010, 28(2):346-355

    LI Fengquan, YE Wei, ZHU Lidong, et al. The types and formation of Quaternary plinthitic red earth[J]. Acta Sedimentologica Sinica, 2010, 28(2):346-355.]
    [37]
    谢树成, 易轶, 刘育燕, 等. 中国南方更新世网纹红土对全球气候变化的响应: 分子化石记录[J]. 中国科学D辑:地球科学, 2003, 33(5): 411-417

    XIE Shucheng, YI Yi, LIU Yuyan, et al. The Pleistocene vermicular red earth in South China signaling the global climatic change: the molecular fossil record[J]. Science in China Series D: Earth Sciences, 2003, 46(11): 1113-1120.]
    [38]
    尹秋珍, 郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报, 2006, 51(2): 186-193

    YIN Qiuzhen, GUO Zhengtang. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2): 213-220.]
    [39]
    Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020[M]. Amsterdam: Elsevier, 2020.
    [40]
    Lisiecki L E, Raymo M E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.
    [41]
    许清海, 李润兰, 朱峰, 等. 华北平原冲积物孢粉沉积相研究[J]. 古地理学报, 2001, 3(2):55-63

    XU Qinghai, LI Runlan, ZHU Feng, et al. Pollen sedimentary facies of fluvial sediments on North China plain[J]. Journal of Palaeogeography, 2001, 3(2):55-63.]
    [42]
    Davis M B. On the theory of pollen analysis[J]. American Journal of Science, 1963, 261(10):897-912. doi: 10.2475/ajs.261.10.897
    [43]
    Prentice I C, Parsons R W. Maximum likelihood linear calibration of pollen spectra in terms of forest composition[J]. Biometrics, 1983, 39(4):1051-1057. doi: 10.2307/2531338
    [44]
    Sugita S. A model of pollen source area for an entire lake surface[J]. Quaternary Research, 1993, 39(2):239-244. doi: 10.1006/qres.1993.1027
    [45]
    Sugita S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition[J]. The Holocene, 2007, 17(2):229-241. doi: 10.1177/0959683607075837
    [46]
    Sugita S. Theory of quantitative reconstruction of vegetation II: all you need is LOVE[J]. The Holocene, 2007, 17(2):243-257. doi: 10.1177/0959683607075838
    [47]
    倪健. 孢粉生物群区化与古植被定量重建[J]. 第四纪研究, 2013, 33(6):1091-1100

    NI Jian. Biomisation and quantitative palaeovegetation reconstruction[J]. Quaternary Sciences, 2013, 33(6):1091-1100.]
    [48]
    秦锋, 赵艳. 基于孢粉组合定量重建古气候的方法在中国的运用及思考[J]. 第四纪研究, 2013, 33(6):1054-1068

    QIN Feng, ZHAO Yan. Methods of quantitative climate reconstruction based on palynological data and their applications in China[J]. Quaternary Sciences, 2013, 33(6):1054-1068.]
    [49]
    郑卓, 张潇, 满美玲, 等. 中国及邻区利用孢粉进行古气候定量重建的回顾与数据集成[J]. 第四纪研究, 2016, 36(3):503-519

    ZHENG Zhuo, ZHANG Xiao, MAN Meiling, et al. Review and data integration of pollen-based quantitative paleoclimate reconstruction studies in China and adjacent areas[J]. Quaternary Sciences, 2016, 36(3):503-519.]
    [50]
    Birks H J B, Heiri O, Seppä H, et al. Strengths and weaknesses of quantitative climate reconstructions based on late-Quaternary biological proxies[J]. The Open Ecology Journal, 2010, 3:68-110.
    [51]
    Chevalier M, Davis B A S, Heiri O, et al. Pollen-based climate reconstruction techniques for late Quaternary studies[J]. Earth-Science Reviews, 2020, 210:103384. doi: 10.1016/j.earscirev.2020.103384
    [52]
    Grimm E C, Jacobson G L Jr. Late-Quaternary vegetation history of the eastern United States[J]. Developments in Quaternary Sciences, 2003, 1:381-402.
    [53]
    Grimm G W, Potts A J. Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction[J]. Climate of the Past, 2016, 12(3):611-622. doi: 10.5194/cp-12-611-2016
    [54]
    Overpeck J T, Webb T, Prentice I C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs[J]. Quaternary Research, 1985, 23(1):87-108. doi: 10.1016/0033-5894(85)90074-2
    [55]
    Simpson G L. Analogue methods in palaeoecology: using the analogue package[J]. Journal of Statistical Software, 2007, 22(2):1-29.
    [56]
    曹现勇, 田芳, 许清海, 等. 亚洲现代花粉数据集[DB/OL]. 2022. https://www.selectdataset.com/dataset/6b8c7675e04282c3751b0534cecc9d8b

    CAO Xianyong, TIAN Fang, XU Qinghai, et al. Modern pollen dataset for Asia[DB/OL]. 2022. https://www.selectdataset.com/dataset/6b8c7675e04282c3751b0534cecc9d8b.]
    [57]
    陈海燕, 徐德宇, 廖梦娜, 等. 中国现代花粉数据集[J]. 植物生态学报, 2021, 45(7):799-808 doi: 10.17521/cjpe.2021.0024

    CHEN Haiyan, XU Deyu, LIAO Mengna, et al. A modern pollen dataset of China[J]. Chinese Journal of Plant Ecology, 2021, 45(7):799-808.] doi: 10.17521/cjpe.2021.0024
    [58]
    Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15):1965-1978. doi: 10.1002/joc.1276
    [59]
    贾云霞, 吴海斌, 张文超, 等. 始新世以来亚洲内陆干旱区的古气候定量重建[J]. 第四纪研究, 2024, 44(5):1262-1272

    JIA Yunxia, WU Haibin, ZHANG Wenchao, et al. Quantitative climate reconstruction in the Asian interior since the Eocene[J]. Quaternary Sciences, 2024, 44(5):1262-1272.]
    [60]
    Nakagawa T, Tarasov P E, Nishida K, et al. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra[J]. Quaternary Science Reviews, 2002, 21(18-19):2099-2113. doi: 10.1016/S0277-3791(02)00014-8
    [61]
    Guiot J. Methodology of the last climatic cycle reconstruction in France from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 80(1):49-69. doi: 10.1016/0031-0182(90)90033-4
    [62]
    颜余真. 米兰科维奇冰期旋回理论中的“4万年周期问题”: 回顾与展望[J]. 第四纪研究, 2023, 43(6):1722-1729

    YAN Yuzhen. The “40, 000-year problem” in the milankovitch theory of pleistocene glacial cycles: retrospect and prospect[J]. Quaternary Sciences, 2023, 43(6):1722-1729.
    [63]
    Head M J, Gibbard P L. Early–Middle Pleistocene transitions: linking terrestrial and marine realms[J]. Quaternary International, 2015, 389:7-46. doi: 10.1016/j.quaint.2015.09.042
    [64]
    Herbert T D. The Mid-Mleistocene climate transition[J]. Annual Review of Earth and Planetary Sciences, 2023, 51:389-418. doi: 10.1146/annurev-earth-032320-104209
    [65]
    Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328(5985):1530-1534. doi: 10.1126/science.1185435
    [66]
    Raymo M E. The initiation of northern hemisphere glaciation[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:353-383. doi: 10.1146/annurev.ea.22.050194.002033
    [67]
    Bailey I, Hole G M, Foster G L, et al. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris[J]. Quaternary Science Reviews, 2013, 75:181-194. doi: 10.1016/j.quascirev.2013.06.004
    [68]
    Naafs B D A, Hefter J, Stein R. Millennial-scale ice rafting events and Hudson Strait Heinrich (-like) Events during the late Pliocene and Pleistocene: a review[J]. Quaternary Science Reviews, 2013, 80:1-28. doi: 10.1016/j.quascirev.2013.08.014
    [69]
    Hennissen J A I, Head M J, De Schepper S, et al. Palynological evidence for a southward shift of the North Atlantic Current at ~2.6 Ma during the intensification of late Cenozoic Northern Hemisphere glaciation[J]. Paleoceanography, 2014, 29(6):564-580. doi: 10.1002/2013PA002543
    [70]
    Hennissen J A I, Head M J, De Schepper S, et al. Increased seasonality during the intensification of Northern Hemisphere glaciation at the Pliocene–Pleistocene boundary ~2.6Ma[J]. Quaternary Science Reviews, 2015, 129:321-332. doi: 10.1016/j.quascirev.2015.10.010
    [71]
    Contoux C, Dumas C, Ramstein G, et al. Modelling Greenland ice sheet inception and sustainability during the Late Pliocene[J]. Earth and Planetary Science Letters, 2015, 424:295-305. doi: 10.1016/j.jpgl.2015.05.018
    [72]
    Ravelo A C, Andreasen D H, Lyle M, et al. Regional climate shifts caused by gradual global cooling in the Pliocene epoch[J]. Nature, 2004, 429(6989):263-267. doi: 10.1038/nature02567
    [73]
    Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500
    [74]
    Etourneau J, Schneider R, Blanz T, et al. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene–Pleistocene climate transition[J]. Earth and Planetary Science Letters, 2010, 297(1-2):103-110. doi: 10.1016/j.jpgl.2010.06.010
    [75]
    Martínez-Garcia A, Rosell-Melé A, McClymont E L, et al. Subpolar link to the emergence of the modern equatorial pacific cold tongue[J]. Science, 2010, 328(5985):1550-1553. doi: 10.1126/science.1184480
    [76]
    Reynolds B C, Frank M, Halliday A N. Evidence for a major change in silicon cycling in the subarctic North Pacific at 2.73 Ma[J]. Paleoceanography, 2008, 23(4):PA4219.
    [77]
    Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate[J]. Nature, 2004, 428(6978):59-63. doi: 10.1038/nature02357
    [78]
    Maslin M A, Li X S, Loutre M F, et al. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation[J]. Quaternary Science Reviews, 1998, 17(4-5):411-426. doi: 10.1016/S0277-3791(97)00047-4
    [79]
    Raymo M E, Nisancioglu K H. The 41 kyr world: Milankovitch's other unsolved mystery[J]. Paleoceanography, 2003, 18(1):1011.
    [80]
    Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4):PA4213.
    [81]
    Martínez-Botí M A, Foster G L, Chalk T B, et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records[J]. Nature, 2015, 518(7537):49-54. doi: 10.1038/nature14145
    [82]
    Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records[J]. Earth and Planetary Science Letters, 2010, 292(1-2):201-211. doi: 10.1016/j.jpgl.2010.01.037
    [83]
    Bartoli G, Sarnthein M, Weinelt M, et al. Final closure of Panama and the onset of northern hemisphere glaciation[J]. Earth and Planetary Science Letters, 2005, 237(1-2):33-44. doi: 10.1016/j.jpgl.2005.06.020
    [84]
    Driscoll N W, Haug G H. A short circuit in thermohaline circulation: a cause for Northern Hemisphere glaciation?[J]. Science, 1998, 282(5388):436-438. doi: 10.1126/science.282.5388.436
    [85]
    Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686):673-676. doi: 10.1038/31447
    [86]
    赵辰辰, 王永波, 胥勤勉. 2.5 Ma以来中国陆地孢粉记录反映的古气候变化[J]. 海洋地质与第四纪地质, 2020, 40(4):175-191

    ZHAO Chenchen, WANG Yongbo, XU Qinmian. Climate changes on Chinese continent since 2.5 Ma: evidence from fossil pollen records[J]. Marine Geology & Quaternary Geology, 2020, 40(4):175-191.]
    [87]
    孙有斌, 刘青松. 晚上新世–早更新世北太平洋和黄土高原的风尘沉积记录的初步对比[J]. 第四纪研究, 2007, 27(2):263-269

    SUN Youbin, LIU Qingsong. Preliminary comparison of eolian depositions in the north pacific and the Chinese loess plateau during the late Pliocence–early Pleistocene[J]. Quaternary Sciences, 2007, 27(2):263-269.]
    [88]
    Demske D, Mohr B, Oberhänsli H. Late Pliocene vegetation and climate of the Lake Baikal region, southern East Siberia, reconstructed from palynological data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(1-2):107-129. doi: 10.1016/S0031-0182(02)00251-1
    [89]
    Andreev A A, Tarasov P E, Wennrich V, et al. Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record[J]. Climate of the Past, 2014, 10(3):1017-1039. doi: 10.5194/cp-10-1017-2014
    [90]
    Brigham-Grette J, Melles M, Minyuk P, et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia[J]. Science, 2013, 340(6139):1421-1427. doi: 10.1126/science.1233137
    [91]
    Lozhkin A V, Anderson P M, Korzun J A, et al. Vegetation response to climate changes in the eastern Arctic during the Middle Gelasian age of the Early Pleistocene[J]. Review of Palaeobotany and Palynology, 2024, 324:105094. doi: 10.1016/j.revpalbo.2024.105094
    [92]
    Simon Q, Bourlès D L, Thouveny N, et al. Cosmogenic signature of geomagnetic reversals and excursions from the Réunion event to the Matuyama–Brunhes transition (0.7–2.14 Ma interval)[J]. Earth and Planetary Science Letters, 2018, 482:510-524. doi: 10.1016/j.jpgl.2017.11.021
    [93]
    Ding Z L, Ranov V, Yang S L, et al. The loess record in southern Tajikistan and correlation with Chinese loess[J]. Earth and Planetary Science Letters, 2002, 200(3-4):387-400. doi: 10.1016/S0012-821X(02)00637-4
    [94]
    Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2):45-55. doi: 10.1016/j.jpgl.2005.06.036
    [95]
    Maher B A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 154:23-84. doi: 10.1016/j.quascirev.2016.08.004
    [96]
    Lozhkin A V, Anderson P M. Palynological characteristics of plant communities in the eastern Arctic during the Early to Middle Calabrian Age[J]. Review of Palaeobotany and Palynology, 2023, 315:104904. doi: 10.1016/j.revpalbo.2023.104904
    [97]
    Fusco F. Picea+Tsuga pollen record as a mirror of oxygen isotope signal? An insight into the Italian long pollen series from Pliocene to Early Pleistocene[J]. Quaternary International, 2010, 225(1):58-74. doi: 10.1016/j.quaint.2009.11.038
    [98]
    Chalk T B, Hain M P, Foster G L, et al. Causes of ice age intensification across the Mid-Pleistocene Transition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50):13114-13119.
    [99]
    崔之久, 陈艺鑫, 张威, 等. 中国第四纪冰期历史、特征及成因探讨[J]. 第四纪研究, 2011, 31(5):749-764

    CUI Zhijiu, CHEN Yixin, ZHANG Wei, et al. Research history, glacial chronology and origins of Quaternary glaciations in China[J]. Quaternary Sciences, 2011, 31(5):749-764.]
  • Related Articles

    [1]WANG Pinxian. Marine geology and Quaternary geology: A combination[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 1-2. DOI: 10.16562/j.cnki.0256-1492.2021072601
    [2]HU Bangqi, YI Liang, ZHAO Jingtao, GUO Jianwei, DING Xue, WANG Feifei, CHEN Weiwei. Magnetostratigraphy of core XT06 and Quaternary sedimentary dynamics of the deep-sea deposits in the West Philippian Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 61-74. DOI: 10.16562/j.cnki.0256-1492.2020101301
    [3]YAO Jihua, LIU Xiaoqun, SONG Wenjie, ZHAO Wengang, LV Huizhu, SONG Wen. Quaternary tectono-sedimentary evolution of Chishan Uplift in the Dongting Lake[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 160-168. DOI: 10.16562/j.cnki.0256-1492.2019071801
    [4]CHEN Xiaohui, MENG Xiangjun, LI Rihui. Sequence stratigraphy of the Late Quaternary in Liaodong Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 37-47. DOI: 10.16562/j.cnki.0256-1492.2019042301
    [5]LIU Hanyao, LIN Changsong, ZHANG Zhongtao, ZHANG Bo, JIANG Jing, TIAN Hongxun, LIU Huan. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37. DOI: 10.16562/j.cnki.0256-1492.2017060201
    [6]LUO Ding, XIAO Yuanfu, YE Siyuan, YU Guochun. PALAEOCLIMATIC CHANGES DURING LATE QUATERNARY IN NINGBO PLAIN[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 155-161. DOI: 10.3724/SP.J.1140.2013.05155
    [7]MING Jie, LI Anchun, MENG Qingyong, WAN Shiming, YAN Wenwen. QUATERNARY ASSEMBLAGE CHARACTERISTIC AND PROVENANCE OF CLAY MINERALS IN THE PARECEVELA BASIN OF THE EAST PHILIPPINE SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148. DOI: 10.3724/SP.J.1140.2012.04139
    [8]WANG Dawei, WU Shiguo, DONG Dongdong, YAO Genshun, CAO Quanbin. SEISMIC CHARACTERISTICS OF QUATERNARY MASS TRANSPORT DEPOSITS IN QIONGDONGNAN BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 69-74. DOI: 10.3724/SP.J.1140.2009.03069
    [9]ZHU Li-dong, ZHOU Shang-zhe, LI Feng-quan, YE Wei, CUI Qiang. THE ELEMENTAL TRANSPORT FEATURES OF RED EARTH FROM TX-SECTION AND ITS PALEO-CLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 117-123.
    [10]ZHU Li-dong, YE Wei, ZHOU Shang-zhe, LI Feng-quan, YANG Li-hui, SHEN Ye-qin. GRAIN-SIZE FEATURES OF QUATERNARY RED EARTH IN JINHUA-QUZHOU BASIN[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 111-116.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return