LUO Di,CAI Feng,YAN Guijing,et al. High-resolution seismic exploration technology with spark source and its application in identification of natural gas hydrates in marine areas[J]. Marine Geology & Quaternary Geology,2024,44(6):34-45. DOI: 10.16562/j.cnki.0256-1492.2024091301
Citation: LUO Di,CAI Feng,YAN Guijing,et al. High-resolution seismic exploration technology with spark source and its application in identification of natural gas hydrates in marine areas[J]. Marine Geology & Quaternary Geology,2024,44(6):34-45. DOI: 10.16562/j.cnki.0256-1492.2024091301

High-resolution seismic exploration technology with spark source and its application in identification of natural gas hydrates in marine areas

More Information
  • Received Date: September 12, 2024
  • Revised Date: November 21, 2024
  • Accurate identification of natural gas hydrates is of great strategic importance for ensuring national energy security, optimizing energy structures, and protecting the environment. Seismic exploration technology is a crucial means for hydrate exploration. However, most multi-channel seismic explorations in marine areas use airgun sources with relatively low dominant frequencies, resulting in limited resolution of seismic waves, which limits its ability to detect shallow surface layers or subtle geological structures. With the increasing in demand for accuracy and the difficulty of hydrate exploration, seismic exploration technology using airgun sources can no longer meet the needs of fine characterization of hydrate ore bodies. Therefore, improving the resolution of seismic exploration technology is crucial for hydrate exploration. This paper introduces a high-resolution seismic detection technology based on small-offset electric sparker sources. Through comparative analysis with airgun sources, the characteristics of electric sparker sources and their application in marine hydrate exploration are deeply discussed. Results show that high-resolution seismic exploration technology using electric sparker sources has good application effects in identifying both diffused hydrates and shallow leakage hydrates. Especially for shallow leakage hydrates, using electric sparker source seismology can better identify amplitude anomalies, fluid migration pathways, and subtle seabed morphologies in the seabed and shallow strata, which can improve effectively the reliability of identifying shallow gas hydrate.

  • [1]
    Rincón-Martínez D, Ruge S M, Arias A S. Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore[J]. Journal of South American Earth Sciences, 2022, 116:103800. doi: 10.1016/j.jsames.2022.103800
    [2]
    Shipley T H, Houston M H, Buffler R T, et al. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises[J]. American Association of Petroleum Geologists Bulletin, 1979, 63(12):2204-2213.
    [3]
    Vanneste M, De Batist M, Golmshtok A, et al. Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia[J]. Marine Geology, 2001, 172(1-2):1-21. doi: 10.1016/S0025-3227(00)00117-1
    [4]
    Foschi M, Etiope G, Cartwright J A. Seismic evidence of extensive microbial gas migration and trapping in submarine gas hydrates (Rakhine Basin, Bay of Bengal)[J]. Marine and Petroleum Geology, 2023, 149:106100. doi: 10.1016/j.marpetgeo.2023.106100
    [5]
    Yoo D G, Kang N K, Yi B Y, et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47:236-247. doi: 10.1016/j.marpetgeo.2013.07.001
    [6]
    Pecher I A, Kukowski N, Huebscher C, et al. The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone – new evidence from Lima Basin, Peru Margin[J]. Earth and Planetary Science Letters, 2001, 185(3-4):343-354. doi: 10.1016/S0012-821X(00)00376-9
    [7]
    Zhang W, Liang J Q, Qiu H J, et al. Double bottom simulating reflectors and tentative interpretation with implications for the dynamic accumulation of gas hydrates in the northern slope of the Qiongdongnan Basin, South China Sea[J]. Journal of Asian Earth Sciences, 2022, 229:105151. doi: 10.1016/j.jseaes.2022.105151
    [8]
    宋海斌, 张岭, 江为为, 等. 海洋天然气水合物的地球物理研究(III): 似海底反射[J]. 地球物理学进展, 2003, 18(2):182-187 doi: 10.3969/j.issn.1004-2903.2003.02.002

    SONG Haibin, ZHANG Ling, JIANG Weiwei, et al. Geophysical researches on marine gas Hydrates (III): bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(2):182-187.] doi: 10.3969/j.issn.1004-2903.2003.02.002
    [9]
    Yi B Y, Lee G H, Horozal S, et al. Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 2011, 28(10):1953-1966. doi: 10.1016/j.marpetgeo.2010.12.001
    [10]
    Yuan T, Spence G D, Hyndman R D, et al. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: amplitude modeling and full waveform inversion[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1):1179-1191. doi: 10.1029/1998JB900020
    [11]
    Crutchley G J, Maslen G, Pecher I A, et al. High-resolution seismic velocity analysis as a tool for exploring gas hydrate systems: an example from New Zealand's southern Hikurangi margin[J]. Interpretation, 2016, 4(1):SA1-SA12. doi: 10.1190/INT-2015-0042.1
    [12]
    Turco F, Crutchley G J, Gorman A R, et al. Seismic velocity and reflectivity analysis of concentrated gas hydrate deposits on the southern Hikurangi Margin (New Zealand)[J]. Marine and Petroleum Geology, 2020, 120:104572. doi: 10.1016/j.marpetgeo.2020.104572
    [13]
    Jeong T, Byun J, Choi H, et al. Estimation of gas hydrate saturation in the Ulleung basin using seismic attributes and a neural network[J]. Journal of Applied Geophysics, 2014, 106:37-49. doi: 10.1016/j.jappgeo.2014.04.006
    [14]
    沙志彬, 梁金强, 郑涛, 等. 地震属性在天然气水合物预测中的应用[J]. 海洋地质与第四纪地质, 2013, 33(5):185-192

    SHA Zhibin, LIANG Jinqiang, ZHENG Tao, et al. The application of seismic attributes to the prediction of gas hydrates[J]. Marine Geology & Quaternary Geology, 2013, 33(5):185-192.]
    [15]
    王秀娟, 吴时国, 徐宁. 地震属性参数在识别天然气水合物和游离气分布模式中的应用[J]. 海洋与湖沼, 2006, 37(3):271-279 doi: 10.3321/j.issn:0029-814X.2006.03.012

    WANG Xiujuan, WU Shiguo, XU Ning. Determining the distribution model of hydrate and free gas occurrence in sediment with seismic attribute parameters[J]. Oceanologia et Limnologia Sinica, 2006, 37(3):271-279.] doi: 10.3321/j.issn:0029-814X.2006.03.012
    [16]
    邢磊. 海洋小多道地震高精度探测关键技术研究[D]. 中国海洋大学硕士学位论文, 2012

    XING Lei. Study of the key technologies of high-precision marine multichannel seismic survey[D]. Master Dissertation of Ocean University of China, 2012.]
    [17]
    戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1):107-111

    QI Bin, WANG Xiangchun, ZHAO Qingxian. Research on the progress of marine sparker seismic exploration[J]. Geophysical and Geochemical Exploration, 2020, 44(1):107-111.]
    [18]
    Buogo S, Cannelli G B. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model[J]. The Journal of the Acoustical Society of America, 2002, 111(6):2594-2600. doi: 10.1121/1.1476919
    [19]
    卢新培, 潘垣, 张寒虹. 水中脉冲放电的电特性与声辐射特性研究[J]. 物理学报, 2002, 51(7):1549-1553 doi: 10.3321/j.issn:1000-3290.2002.07.024

    LU Xinpei, PAN Yuan, ZHANG Hanhong. The electrical and acoustical characteristics of pulsed discharge in water[J]. Acta Physica Sinica, 2002, 51(7):1549-1553.] doi: 10.3321/j.issn:1000-3290.2002.07.024
    [20]
    秦曾衍, 左公宁, 王永荣, 等. 高压强脉冲放电及其应用[M]. 北京: 北京工业大学出版社, 2000

    QIN Zengyan, ZUO Gongning, WANG Yongrong, et al. The Application of High Voltage and Super-Density Pulse Discharge[M]. Beijing: Beijing Industry University Press, 2000.]
    [21]
    裴彦良, 王揆洋, 李官保, 等. 海洋工程地震勘探震源及其应用研究[J]. 石油仪器, 2007, 21(2):20-23

    PEI Yanliang, WANG Kuiyang, LI Guanbao, et al. Application study of marine engineering seismic sources[J]. Petroleum Instruments, 2007, 21(2):20-23.]
    [22]
    刘怀山, 王文秋, 尹燕欣. 海洋地球物理探测在海岸工程建设中的应用: 以曹妃甸港为例[J]. 海岸工程, 2022, 41(4):313-327 doi: 10.12362/j.issn.1002-3682.20220727001

    LIU Huaishan, WANG Wenqiu, YIN Yanxin. Offshore geophysical prospecting on coastal engineering: a case study in Caofeidian[J]. Coastal Engineering, 2022, 41(4):313-327.] doi: 10.12362/j.issn.1002-3682.20220727001
    [23]
    Anitha G, Ramana M V, Ramprasad T, et al. Shallow geological environment of Krishna–Godavari offshore, eastern continental margin of India as inferred from the interpretation of high resolution sparker data[J]. Journal of Earth System Science, 2014, 123(2):329-342. doi: 10.1007/s12040-013-0399-3
    [24]
    Mangipudi V R, Goli A, Desa M, et al. Synthesis of deep multichannel seismic and high resolution sparker data: implications for the geological environment of the Krishna–Godavari offshore, Eastern Continental Margin of India[J]. Marine and Petroleum Geology, 2014, 58:339-355. doi: 10.1016/j.marpetgeo.2014.08.006
    [25]
    易虎, 詹文欢, 闵伟, 等. 小多道地震震源效果在海域活动断裂探测中的对比研究[J]. 地震地质, 2022, 44(2):333-348 doi: 10.3969/j.issn.0253-4967.2022.02.004

    YI Hu, ZHAN Wenhuan, MIN Wei, et al. A comparative study of source effect based on mini-multichannel seismic profile in marine active fault detection[J]. Seismology and Geology, 2022, 44(2):333-348.] doi: 10.3969/j.issn.0253-4967.2022.02.004
    [26]
    骆迪, 蔡峰, 闫桂京, 等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿, 2020, 36(9):101-108

    LUO Di, CAI Feng, YAN Guijing, et al. High resolution seismic method for shallow gas hydrates exploration[J]. Marine Geology Frontiers, 2020, 36(9):101-108.]
    [27]
    Luo D, Cai F, Wu Z Q. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology[J]. Journal of Ocean University of China, 2017, 16(3):370-382. doi: 10.1007/s11802-017-3145-7
    [28]
    骆迪, 蔡峰, 吴志强, 等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报, 2019, 62(2):730-742 doi: 10.6038/cjg2019M0178

    LUO Di, CAI Feng, WU Zhiqiang, et al. The key technologies of marine small scale high resolution multichannel seismic high-precision imaging[J]. Chinese Journal of Geophysics, 2019, 62(2):730-742.] doi: 10.6038/cjg2019M0178
    [29]
    蔡峰, 吴能友, 闫桂京, 等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿, 2020, 36(9):73-78

    CAI Feng, WU Nengyou, YAN Guijing, et al. Characteristics of shallow gas hydrates accumulation in the sea[J]. Marine Geology Frontiers, 2020, 36(9):73-78.]
    [30]
    Barnes P M, Lamarche G, Bialas J, et al. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand[J]. Marine Geology, 2010, 272(1-4):26-48. doi: 10.1016/j.margeo.2009.03.012
    [31]
    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104:29-39. doi: 10.1016/j.marpetgeo.2019.03.023
    [32]
    Hovland M, Svensen H. Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4):15-23. doi: 10.1016/j.margeo.2005.12.005
    [33]
    Ben-Avraham Z, Reshef M, Smith G. Seismic signature of gas hydrate and mud volcanoes of the South African continental margin[C]//Proceedings of the NATO Advanced Research Workshop on Mud Volcanism, Geodynamics and Seismicity. Baku, Azerbaijan: Springer, 2005: 17-27.
    [34]
    Bohrmann G, Ivanov M, Foucher J P, et al. Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes[J]. Geo-Marine Letters, 2003, 23(3-4):239-249. doi: 10.1007/s00367-003-0157-7
  • Cited by

    Periodical cited type(3)

    1. 郭若舜,何磊,叶思源,赵俐红. 辽河三角洲大凌河河口湿地沉积物晚更新世以来的矿物特征及其物源、气候意义. 现代地质. 2020(01): 154-165 .
    2. 孔凡彪,徐树建,贾广菊. 沉积物中硬质粘土层的研究进展. 山东国土资源. 2018(03): 1-7+14 .
    3. 郭若舜,叶思源,何磊,赵俐红. 全新世以来辽河三角洲地区的化学风化及其对气候变化的响应. 海洋科学. 2018(09): 38-50 .

    Other cited types(5)

Catalog

    Article views (25) PDF downloads (12) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return