WANG Yuanyuan,ZHANG Yabin,WANG Xiaobo,et al. Characteristics of the biogenic traces in the Lower Pearl River Delta Plain and their implication to paleoenvironment[J]. Marine Geology & Quaternary Geology,2025,45(3):1-13. DOI: 10.16562/j.cnki.0256-1492.2024082901
Citation: WANG Yuanyuan,ZHANG Yabin,WANG Xiaobo,et al. Characteristics of the biogenic traces in the Lower Pearl River Delta Plain and their implication to paleoenvironment[J]. Marine Geology & Quaternary Geology,2025,45(3):1-13. DOI: 10.16562/j.cnki.0256-1492.2024082901

Characteristics of the biogenic traces in the Lower Pearl River Delta Plain and their implication to paleoenvironment

More Information
  • Received Date: August 28, 2024
  • Revised Date: November 17, 2024
  • Accepted Date: November 17, 2024
  • Available Online: March 17, 2025
  • Affected by both rivers and oceans, the Lower Pearl River Delta Plain has a wide variety of organisms and is sensitive to the environment, which reflects the characteristics of the sedimentary environment to some certain extent. By using three-dimensional reconstruction technology, the composition of biological traces in different microenvironments was studied n detail. The physic-chemical factors such as salinity, particle size, turbidity, and TOC in the biogenic traces were analyzed in the study area. Results are as follows. (1) The tracemakers in the study area included crustacean crabs, annelid Perinereis, bivalve river clams Corbicula fluminea, mudskippers Periophthalmus, and birds. Among them, the crabs and Perinereis were the main tracemakers. (2) The main biological traces in the study area included feeding and dwelling traces of Perinereis, dwelling and crawling traces of crabs, dwelling traces of Corbicula fluminea, dwelling and crawling traces of Periophthalmus, etc. The vertical burrows are mainly in I-, L-, Y- and U-shapes. (3) The burrow morphology in the study area was compared with the ichnofossils of Arenicolites, Cylindrichnus, Diplocraterion, Ophiomorpha, Palaeophycus, and Skolithos. They are analog with Skolithos ichnofacies. Meanwhile, the composition and distribution of the biogenic traces in the study areas were studied, and the distribution maps were analyzed. This study provided modern evidence for the sedimentological study in the Lower Pearl River Delta and implication to the identification of the ichnology and paleoenvironment in the ancient lower delta plain.

  • [1]
    金振奎, 高白水, 李桂仔, 等. 三角洲沉积模式存在的问题与讨论[J]. 古地理学报, 2014, 16(5):569-580 doi: 10.7605/gdlxb.2014.05.46

    JIN Zhenkui, GAO Baishui, LI Guizai, et al. Problems and discussions about delta depositional models[J]. Journal of Palaeogeography, 2014, 16(5):569-580.] doi: 10.7605/gdlxb.2014.05.46
    [2]
    胡斌, 王冠忠, 齐永安. 痕迹学理论与应用[M]. 徐州: 中国矿业大学出版社, 1997

    HU Bin, WANG Guanzhong, QI Yong’an. Theory and Application of Ichnology[M]. Xuzhou: China University of Mining and Technology Press, 1997.]
    [3]
    Bann K L, Fielding C R, MacEachern J A, et al. Differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology: Permian Pebbley Beach Formation, Sydney Basin, Australia[J]. Geological Society, London, Special Publications, 2004, 228(1):179-211. doi: 10.1144/GSL.SP.2004.228.01.10
    [4]
    Gingras M K, Pemberton S G, Saunders T, et al. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings[J]. Palaios, 1999, 14(4):352-374. doi: 10.2307/3515462
    [5]
    Hamer J M M, Sheldon N D. Neoichnology at lake margins: implications for paleo-lake systems[J]. Sedimentary Geology, 2010, 228(3-4):319-327. doi: 10.1016/j.sedgeo.2010.06.002
    [6]
    Dashtgard S E. Neoichnology of the lower delta plain: Fraser River Delta, British Columbia, Canada: implications for the ichnology of deltas[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1-4):98-108. doi: 10.1016/j.palaeo.2011.05.001
    [7]
    Ayranci K, Dashtgard S E. Infaunal holothurian distributions and their traces in the Fraser River delta front and prodelta, British Columbia, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392:232-246. doi: 10.1016/j.palaeo.2013.09.021
    [8]
    Dashtgard S E. Linking invertebrate burrow distributions (neoichnology) to physicochemical stresses on a sandy tidal flat: implications for the rock record[J]. Sedimentology, 2011, 58(6):1303-1325. doi: 10.1111/j.1365-3091.2010.01210.x
    [9]
    Abdel-Fattah Z A. Morpho-sedimentary characteristics and generated primary sedimentary structures on the modern microtidal sandy coast of eastern Nile Delta, Egypt[J]. Journal of African Earth Sciences, 2019, 150:355-378. doi: 10.1016/j.jafrearsci.2018.11.015
    [10]
    De C. Neoichnological activities of endobenthic invertebrates in downdrift coastal Ganges delta complex, India: their significance in trace fossil interpretations and paleoshoreline reconstructions[J]. Ichnos, 2000, 7(2):89-113. doi: 10.1080/10420940009380149
    [11]
    郑思琦, 林振文, 李出安, 等. 珠江三角洲第四纪沉积物初始沉积年龄及沉积演化[J]. 海洋地质与第四纪地质, 2023, 43(6):145-156

    ZHENG Siqi, LIN Zhenwen, LI Chu’an, et al. Discussion on the Quaternary initial sedimentary age and sedimentary evolution in the Pearl River Delta[J]. Marine Geology & Quaternary Geology, 2023, 43(6):145-156.]
    [12]
    黄镇国, 李平日, 张仲英, 等. 珠江三角洲地貌发育的新认识[J]. 台湾海峡, 1984, 3(2):189-198

    HUANG Zhenguo, LI Pingri, ZHANG Zhongying, et al. A new approach to the geomorphological evolution of the Zhujiang Delta[J]. Taiwan Strait, 1984, 3(2):189-198.]
    [13]
    袁家义, 梁国雄, 陈木宏, 等. 广花平原全新世海侵的北界[J]. 中山大学学报, 1986(3):63-68

    YUAN Jiayi, LIANG Guoxiong, CHEN Muhong, et al. The limits of Holocene Transgression in Guangzhou-Huaxian Plain[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1986(3):63-68.]
    [14]
    张绍轩, 汤永杰, 郑翠美, 等. 珠江三角洲全新世海-陆沉积模式转换及其年代[J]. 海洋地质与第四纪地质, 2020, 40(5):107-117

    ZHANG Shaoxuan, TANG Yongjie, ZHENG Cuimei, et al. Holocene sedimentary environment transform and onset time of Pearl River Delta progradation[J]. Marine Geology & Quaternary Geology, 2020, 40(5):107-117.]
    [15]
    吴聪, 陈炽新, 彭志远, 等. 珠江口13-LD-ZK19钻孔沉积硅藻分布特征及其古环境响应[J]. 微体古生物学报, 2020, 37(3):285-293

    WU Cong, CHEN Chixin, PENG Zhiyuan, et al. Distribution characteristics and paleoenvironmental response of diatoms from Core 13-LD-ZK19 in the Estuary of Pearl River, China[J]. Acta Micropalaeontologica Sinica, 2020, 37(3):285-293.]
    [16]
    吉俊熹, 时硕, 陈莹璐, 等. 珠江三角洲全新世沉积物磁性特征及早期成岩作用分析[J]. 海洋学报, 2022, 44(6):89-105

    JI Junxi, SHI Shuo, CHEN Yinglu, et al. Magnetic characteristics and early diagenesis of Holocene sediments in the Zhujiang River Delta[J]. Haiyang Xuebao, 2022, 44(6):89-105.]
    [17]
    李炎华, 侯卫生, 陈秀文, 等. 珠江三角洲晚更新世地层三维结构重建及其指示意义[J]. 第四纪研究, 2022, 42(3):869-879

    LI Yanhua, HOU Weisheng, CHEN Xiuwen, et al. Reconstruction of 3D structures of the Late Pleistocene in Pearl River Delta and it indicating meaning[J]. Quaternary Sciences, 2022, 42(3):869-879.]
    [18]
    吴月琴, 刘春莲, 杨小强, 等. 珠江三角洲中部全新世以来的微体动物群记录与古环境重建[J]. 海洋地质与第四纪地质, 2019, 39(2):31-43

    WU Yueqin, LIU Chunlian, YANG Xiaoqiang, et al. Holocene microfaunal records in the central Pearl River Delta and implications for palaeoenvironmental changes[J]. Marine Geology & Quaternary Geology, 2019, 39(2):31-43.]
    [19]
    张丽丽, 舒誉, 蔡国富, 等. 珠江口盆地东部始新世—渐新世沉积环境演变及对烃源条件的影响[J]. 石油学报, 2019, 40(S1):153-165

    ZHANG Lili, SHU Yu, CAI Guofu, et al. Eocene-Oligocene sedimentary environment evolution and its impact on hydrocarbon source conditions in eastern Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1):153-165.]
    [20]
    刘海, 徐耀辉, 李阳, 等. 海陆过渡相三角洲沉积体系陆源有机质沉积特征及其影响因素的模拟实验研究[J]. 沉积学报, 2024, 42(1):251-265

    LIU Hai, XU Yaohui, LI Yang, et al. Experimental simulation of Terrigenous organic matter sedimentary characteristics and its influencing factors in transitional facies delta depositional system[J]. Acta Sedimentologica Sinica, 2024, 42(1):251-265.]
    [21]
    钟玉婷, 董艳蕾, 李顺利, 等. 珠三坳陷珠海组海陆过渡相沉积特征及储层控制因素[J]. 东北石油大学学报, 2023, 47(4):39-56,106 doi: 10.3969/j.issn.2095-4107.2023.04.004

    ZHONG Yuting, DONG Yanlei, LI Shunli, et al. Sedimentary characteristics and reservoir controlling factors of Sea-land transition in Zhuhai Formation, Zhu-3 Depression[J]. Journal of Northeast Petroleum University, 2023, 47(4):39-56,106.] doi: 10.3969/j.issn.2095-4107.2023.04.004
    [22]
    刘幼萍. 珠江三角洲河网区变化环境下的河床演变趋势和水文极端事件[J]. 水文, 2020, 40(3):71-75,96

    LIU Youping. Tendency of fluvial process and hydrologic extreme events in River Network of Pearl River Delta under changing environment[J]. Journal of China Hydrology, 2020, 40(3):71-75,96.]
    [23]
    吴翼, 付淑清, 夏真. 伶仃洋钻孔岩芯的磁学记录及其对海水进退的响应[J]. 海洋学报, 2021, 43(5):88-99

    WU Yi, FU Shuqing, XIA Zhen. Magnetic variations of sediments from a drilling core in the Lingdingyang Bay, Zhujiang River Estuary, and their responses to marine transgression and regression[J]. Haiyang Xuebao, 2021, 43(5):88-99.]
    [24]
    刘太胜, 姜沄林, 陆尧, 等. 珠江口海域沉积物中总氮总磷的空间分布特征[J]. 广东化工, 2021, 48(16):148-149

    LIU Taisheng, JIANG Yunlin, LU Yao, et al. Spatial distribution and pollution status of total Nitrogen and total Phosphorus in sediments of Pearl River Estuary and its adjacent area[J]. Guangdong Chemical Industry, 2021, 48(16):148-149.]
    [25]
    吴伟, 刘俊成, 刘琮滢, 等. 珠江口盆地白云凹陷珠江组陆架边缘三角洲沉积与生物遗迹特征[J]. 中国石油大学学报: 自然科学版, 2020, 44(4):152-162

    WU Wei, LIU Juncheng, LIU Congying, et al. Sedimentary and ichonology characteristics of continental shelf-edge delta of Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin[J]. Journal of China University of Petroleum: Edition of Natural Science, 2020, 44(4):152-162.]
    [26]
    吴伟, 白晓婧, 刘惟庆, 等. 白云凹陷北坡珠江组下部储层生物遗迹及沉积演化特征[J]. 中国石油大学学报: 自然科学版, 2023, 47(1):12-24

    WU Wei, BAI Xiaojing, LIU Weiqing, et al. Characteristics of sedimentary reservoirs trace fossils and sedimentary evolution in the lower Zhujiang Formation on north slope of Baiyun Sag[J]. Journal of China University of Petroleum: Edition of Natural Science, 2023, 47(1):12-24.]
    [27]
    王海邻, 张彬, 宋慧波, 等. 滦河三角洲潮坪环境现代生物遗迹组合及其分布特征[J]. 古地理学报, 2022, 24(6):1179-1192

    WANG Hailin, ZHANG Bin, SONG Huibo, et al. Assemblages of lebensspuren and distribution characteristics in tidal flat of Luanhe delta[J]. Journal of Palaeogeography: Chinese Edition, 2022, 24(6):1179-1192.]
    [28]
    王翠, 王媛媛, 胡斌. 黄河三角洲潮坪环境现代生物遗迹与物化条件的响应关系[J]. 沉积学报, 2023, 41(3):748-762

    WANG Cui, WANG Yuanyuan, HU Bin. The response relationship between biogenic structures and physicochemical stresses of the Yellow River Deltaic Tidal Flat[J]. Acta Sedimentologica Sinica, 2023, 41(3):748-762.]
    [29]
    王媛媛, 王学芹, 胡斌. 黄河三角洲潮坪环境中现代生物遗迹组成与分布特征[J]. 沉积学报, 2019, 37(6):1244-1257

    WANG Yuanyuan, WANG Xueqin, HU Bin. The composition and distribution characteristics of Biogenic Sedimentary Structures in tidal flat of Yellow River delta[J]. Acta Sedimentologica Sinica, 2019, 37(6):1244-1257.]
    [30]
    Wang Y Y, Wang X Q, Uchman A, et al. Burrows of the polychaete Perinereis Aibuhiutensis on a Tidal Flat of the Yellow River Delta in China: implications for the ichnofossils Polykladichnus and Archaeonassa[J]. Palaios, 2019, 34(5):271-279. doi: 10.2110/palo.2018.105
    [31]
    Wang Y Y, Wang X Q, Hu B, et al. Tomographic reconstructions of crab burrows from deltaic tidal flat: contribution to palaeoecology of decapod trace fossils in coastal settings[J]. Palaeoworld, 2019, 28(4):514-524. doi: 10.1016/j.palwor.2019.04.003
    [32]
    Wang Y Y, Gou S L, Wang C, et al. The crab Macrophthalmus japonicus burrows on a tidal flat of the Yellow River Delta in China: their 3D morphological variability in relation to physicochemical conditions and palaeoichnological perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 638:112037. doi: 10.1016/j.palaeo.2024.112037
    [33]
    王海邻, 王长征, 宋慧波, 等. 杭州湾庵东滨岸潮间带现代沉积物中的生物遗迹特征[J]. 沉积学报, 2017, 35(4):714-729

    WANG Hailin, WANG Changzheng, SONG Huibo, et al. Characteristic of Biogenic Traces in the Modern Sediments of Intertidal Flat in Andong area, Hangzhou Bay[J]. Acta Sedimentologica Sinica, 2017, 35(4):714-729.]
    [34]
    王媛媛, 勾松林, 张国成. 现代珠江三角洲前缘生物遗迹组成与分布特征[J]. 沉积学报, 2024, 42(5):1512-1529

    WANG Yuanyuan, GOU Songlin, ZHANG Guocheng. Composition and distribution characteristics of biological traces in the Pearl River Delta front[J]. Acta Sedimentologica Sinica, 2024, 42(5):1512-1529.]
    [35]
    黄镇国, 李平日, 张仲英, 等. 珠江三角洲形成发育演变[M]. 广州: 科学普及出版社广州分社, 1982: 278

    HUANG Zhenguo, LI Pingri, ZHANG Zhongying, et al. Formation, Development and Evolution of the Pearl River Delta[M]. Guangzhou: Science and Technology of China Press, 1982: 278.]
    [36]
    曾昭璇. 珠江三角洲地貌发育[M]. 广州: 暨南大学出版社, 2012

    ZENG Zhaoxuan. Geomorphic Development of the Pearl River Delta[M]. Guangzhou: Jinan University Press, 2012.]
    [37]
    马道修, 徐明广, 周青伟, 等. 珠江三角洲沉积相序[J]. 海洋地质与第四纪地质, 1988, 8(1):43-53

    MA Daoxiu, XU Mingguang, ZHOU Qingwei, et al. Sedimentary facies sequences of the Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1988, 8(1):43-53.]
    [38]
    龙云作, 霍春兰, 杨胜雄. 珠江三角洲现代沉积环境及沉积特征[J]. 海洋地质与第四纪地质, 1989, 9(4):15-27

    LONG Yunzuo, HUO Chunlan, YANG Shengxiong. Modern sedimentary environment and characteristics of the Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1989, 9(4):15-27.]
    [39]
    赵焕庭. 珠江河口的水文和泥沙特征[J]. 热带地理, 1989, 9(3):201-212

    ZHAO Huanting. Hydrological and sedimentary characteristics of the Pearl River Estuary[J]. Tropical Geography, 1989, 9(3):201-212.]
    [40]
    吴超羽, 韦惺. 从溺谷湾到三角洲: 现代珠江三角洲形成演变研究辨析[J]. 海洋学报, 2021, 43(1):1-26

    WU Chaoyu, WEI Xing. From drowned valley to delta: discrimination and analysis on issues of the formation and evolution of the Zhujiang River Delta[J]. Haiyang Xuebao, 2021, 43(1):1-26.]
    [41]
    崔伟强. 珠江三角洲平原地区气候、雨量站网最佳密度的探讨[J]. 热带气象, 1986, 2(3):268-274

    CUI Weiqiang. The study of optimum density of climate and rainfall station networks over Zhujiang plain area[J]. Journal of Tropical Meteorology, 1986, 2(3):268-274.]
    [42]
    薛春汀, Eisma E, 成国栋, 等. 黄河三角洲下三角洲平原沉积环境[J]. 海洋地质与第四纪地质, 1993, 13(1):33-40

    XUE Chunting, Eisma E, CHENG Guodong, et al. Depositional environment of lower delta plain of Yellow River Delta[J]. Marine Geology & Quaternary Geology, 1993, 13(1):33-40.]
    [43]
    许桂生, 王文祥, 赵仲生, 等. 受潮汐影响的下三角洲平原聚煤作用[J]. 煤田地质与勘探, 1997, 25(2):7-10

    XU Guisheng, WANG Wenxiang, ZHAO Zhongsheng, et al. Coal accumulation on the tide influenced lower delta plain[J]. Coal Geology & Exploration, 1997, 25(2):7-10.]
    [44]
    龙云作, 霍春兰, 司桂贤, 等. 对珠江三角洲沉积特征和沉积模式的一些认识[J]. 海洋地质与第四纪地质, 1985, 5(4):49-57

    LONG Yunzuo, HUO Chunlan, SI Guixian, et al. On sedimentary characteristics and model of Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1985, 5(4):49-57.]
    [45]
    张光威, 马道修, 徐明广, 等. 珠江口现代沉积物构造特征及其沉积环境[J]. 海洋地质与第四纪地质, 1988, 8(3):71-83

    ZHANG Guangwei, MA Daoxiu, XU Mingguang, et al. Sedimentary environments and structures of modern sediments in the mouth of Zhujiang River[J]. Marine Geology & Quaternary Geology, 1988, 8(3):71-83.]
    [46]
    周曾, 刘瑶, 吴一鸣, 等. 河口海岸沉积层理特征与形成机制[J]. 水科学进展, 2024, 35(1):167-182

    ZHOU Zeng, LIU Yao, WU Yiming, et al. Sedimentary stratigraphic characteristics and formation mechanisms of estuarine coasts[J]. Advances in Water Science, 2024, 35(1):167-182.]
    [47]
    李勇, 李海燕, 赵应权. 沉积物粒度特征及其对环境的指示意义: 以濠河为例[J]. 吉林大学学报: 地球科学版, 2015, 45(3):918-925

    LI Yong, LI Haiyan, ZHAO Yingquan, et al. Grain size characteristics of Haohe River sediments and its environmental implications[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(3):918-925.]
    [48]
    胡斌, 王媛媛, 张璐, 等. 黄河中下游焦作区段现代边滩沉积中的生物遗迹[J]. 古地理学报, 2012, 14(5):628-638 doi: 10.7605/gdlxb.2012.05.008

    HU Bin, WANG Yuanyuan, ZHANG Lu, et al. Biogenic traces in modern point bar deposits of the Middle-Lower Reaches of Yellow River in Jiaozuo area, Henan Province[J]. Journal of Palaeogeography, 2012, 14(5):628-638.] doi: 10.7605/gdlxb.2012.05.008
    [49]
    Schäfer W. Wirkungen der Benthos-Organismen auf den jungen Schichtverband[J]. Senckenbergiana Lethaea, 1956, 37(3-4):183-263.
    [50]
    Van Wagoner J C. Sequence stratigraphy and marine to nonmarine facies architecture of foreland Basin strata, Book Cliffs, Utah, U. S. A. : reply[J]. AAPG Bulletin, 1998, 82(8):1607-1618.
    [51]
    Pattison S A J. Sequence stratigraphic significance of sharp-based lowstand shoreface deposits, Kenilworth member, Book Cliffs, Utah[J]. AAPG Bulletin, 1995, 79(3):444-462.
    [52]
    张轶超. 大兴安岭林区不同纬度白桦天然林林下植物物种多样性及其影响因素研究[D]. 内蒙古农业大学硕士学位论文, 2023

    ZHANG Yichao. Understory plant species diversity and its influencing factors in Betula platyphylla natural forest at different latitudes in the Greater Khingan Mountains[D]. Master Dissertation of Inner Mongolia Agricultural University, 2023.]
    [53]
    MacEachern J A, Bann K L, Bhattacharya J P, et al. Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms, and tides[J]. Society for Sedimentary Geology, 2005, 83:49-85.
    [54]
    Pollard J E, Goldring R, Buck S G. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation[J]. Journal of the Geological Society, 1993, 150(1):149-164. doi: 10.1144/gsjgs.150.1.0149
    [55]
    Locklair R E, Savrda C E. Ichnofossil tiering analysis of a rhythmically bedded chalk-marl sequence in the Upper Cretaceous of Alabama[J]. Lethaia, 1998, 31(4):311-321. doi: 10.1111/j.1502-3931.1998.tb00521.x
    [56]
    Coates L, Maceachern J A. The ichnological signature of wave- and river-dominated deltas: Dunvegan and Basal Belly River formations, West-Central Alberta[J]. CSPG and Petroleum Society Joint Convention, 1999: 29-46.
    [57]
    Savrda C E, Blanton‐Hooks A D, COLLIER J W, et al. Taenidium and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, eastern Alabama, southeastern U. S. A[J]. Ichnos, 2000, 7(3):227-242. doi: 10.1080/10420940009380162
    [58]
    Sáez A, Anadón P, Herrero M J, et al. Variable style of transition between Palaeogene fluvial fan and lacustrine systems, southern Pyrenean foreland, NE Spain[J]. Sedimentology, 2007, 54(2):367-390. doi: 10.1111/j.1365-3091.2006.00840.x
    [59]
    Gani M R, Bhattacharya J P, MacEachern J A. Using ichnology to determine the relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, U. S. A. [M]//MacEachern J A, Bann K L, Gingras M K, et al. Applied Ichnology. Tulsa: SEPM, 2007, 52: 209-225.
    [60]
    Aguirre J, De Gibert J M, Puga-Bernabéu A. Proximal–distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(3-4):328-337. doi: 10.1016/j.palaeo.2010.03.004
    [61]
    Hofmann R, Mángano M G, Elicki O, et al. Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the middle Cambrian (Stage 5) of Jordan[J]. Journal of Paleontology, 2012, 86(6):931-955. doi: 10.1666/11-129R1.1
    [62]
    Frey R W, Howard J D. Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah[J]. Journal of Paleontology, 1990, 64(5):803-820. doi: 10.1017/S0022336000019004
    [63]
    Bromley R G, Frey R W. Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha[J]. Bulletin of the Geological Society of Denmark, 1974, 23:311-335.
    [64]
    Moosavizadeh S M A, Knaust D. The trace fossil Gyrolithes lorcaensis from the Lower Cretaceous of the Kopet-Dagh Basin, NE Iran[J]. Ichnos, 2022, 29(1):11-26. doi: 10.1080/10420940.2021.2017921
    [65]
    Mcilroy D. Ichnology of a macrotidal tide-dominated deltaic depositional system: Lajas formation, Neuquén province, Argentina[M]//Bromley R G, Buatois L A, Mángano G, et al. Sediment–Organism Interactions: A Multifaceted Ichnology. Tulsa: SEPM, 2007, 88: 195.
  • Related Articles

    [1]CHENG Yu, HAO Shefeng, ZOU Xinqing, LUO Ding, GAO Bingfei, YUAN Feng, XU Kang. Millennium-scale coastline changes and sedimentary environment evolution in the incised valley of the Yangtze River Delta since the Holocene[J]. Marine Geology & Quaternary Geology. DOI: 10.16562/j.cnki.0256-1492.2024040701
    [2]ZHENG Siqi, LIN Zhenwen, LI Chu’an, LI Guanhua, ZHUANG Wenming, LI Shiying, LUO Junchao, YANG Feng, LI Yulong. Discussion on the Quaternary initial sedimentary age and sedimentary evolution in the Pearl River Delta[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 145-156. DOI: 10.16562/j.cnki.0256-1492.2023033001
    [3]LU Hongyu, JIANG Shoujun, HUANG Kongwen, CHEN Cong, TANG Yongjie, LI Hongwei, HUANG Ping, HUANG Kangyou. Sedimentary sequences in response to marine transgression during the late Quaternary, Pearl River delta[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 18-30. DOI: 10.16562/j.cnki.0256-1492.2022072102
    [4]ZHANG Shaoxuan, TANG Yongjie, ZHENG Cuimei, CHEN Zhen, ZHENG Zhuo. Holocene sedimentary environment transform and onset time of Pearl River Delta progradation[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 107-117. DOI: 10.16562/j.cnki.0256-1492.2020030701
    [5]WU Yueqin, LIU Chunlian, YANG Xiaoqiang, HANG Yi, YIN Jian, ZHANG Kai. Holocene microfaunal records in the central Pearl River Delta and implications for palaeoenvironmental changes[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 31-43. DOI: 10.16562/j.cnki.0256-1492.2018042801
    [6]ZHOU Yang, XIE Yecai, CHEN Fang, LONG Gui, CHEN Chixin, WU Cong, ZHENG Zhimin, HUANG Xuefei. MICROFAUNAS IN HOLE ZK201-2 AT ZHUJIANG RIVER DELTA SINCE LATE PLEISTOCENE AND THEIR IMPLICATIONS FOR PALEOENVIRONMENTS[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 113-122. DOI: 10.16562/j.cnki.0256-1492.2015.04.012
    [7]PENG Jun, CHEN Shenliang, LI Guqi. SEDIMENTARY INFORMATION OF TIDAL FLAT OF THE YELLOW RIVER DELTA AFTER LAST GLACIAL MAXIMUM AND ITS ENVIRONMENTAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 19-26. DOI: 10.3724/SP.J.1140.2014.02019
    [8]WANG Jianhua, CAO Linglong, WANG Xiaojing, YANG Xiaoqiang, YANG Jie, SU Zhihua. EVOLUTION OF SEDIMENTARY FACIES AND PALEOENVIRONMENT DURING THE LATE QUATERNARY IN WANQINGSHA AREA OF THE PEARL RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 35-41. DOI: 10.3724/SP.J.1140.2009.06035
    [9]YANG Mu-zhuang, LAI Qi-hong, ZHOU Shun-gui. RELATIONSHIP OF THE SOIL FLUORINE ENRICHMENT AND MARINE INVASION IN THE PEARL RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 17-20.
    [10]GAO Fang-lei, YANG Xiao-qiang, DONG Yi-xin, LIANG Qiu-hua, ZHOU Wen-juan. CARBON-NITROGEN RECORD IN SEDIMENTS OF CORE PD IN THE PEARL RIVER DELTA AND THE ENVIRONMENTAL SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 33-39.
  • Cited by

    Periodical cited type(2)

    1. 张晓洁,肖柳,郭肖伊,南海明,张涵,王飞飞,许博超. 夏季长江口邻近海域活体底栖有孔虫优势种群及分布特征研究. 中国海洋大学学报(自然科学版). 2024(08): 74-82 .
    2. 吴玉琦,陈页,郭远明,袁涛,李铁军,乔玲. 底栖有孔虫对海洋环境的生态响应概述. 地球科学进展. 2024(09): 889-901 .

    Other cited types(2)

Catalog

    Article views (1) PDF downloads (1) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return