LI Yunhai,LIN Yunpeng,WANG Liang,et al. Impact of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter in the Mud Depo-center of Zhejiang-Fujian Coast[J]. Marine Geology & Quaternary Geology,2024,44(5):27-37. DOI: 10.16562/j.cnki.0256-1492.2024071001
Citation: LI Yunhai,LIN Yunpeng,WANG Liang,et al. Impact of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter in the Mud Depo-center of Zhejiang-Fujian Coast[J]. Marine Geology & Quaternary Geology,2024,44(5):27-37. DOI: 10.16562/j.cnki.0256-1492.2024071001

Impact of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter in the Mud Depo-center of Zhejiang-Fujian Coast

More Information
  • Received Date: July 09, 2024
  • Revised Date: August 15, 2024
  • Accepted Date: August 15, 2024
  • Typhoons are one of the most significant ocean-atmosphere interaction processes at the weather scale, exerting a large impact on the marine environment (including the deposition of organic matter) within a short period. The effects of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter (SOM) were analyzed. The distinct influence of typhoons following different paths on SOM was compared, and their mechanisms were discussed based on the analysis on grain size, total organic carbon (TOC), total nitrogen (TN), and carbon isotope composition (δ13C) of sediments collected in the Mud Depo-center of the Zhejiang-Fujian Coast before and after Typhoon Morakot (2009). Results indicate that Typhoon Morakot (2009) significantly affected the compositions and distributions of TOC in the study area. The findings from a three end-member mixing model revealed that the sedimentary organic carbon in the study area originated primarily from the sediments of the Yangtze River Delta and marine phytoplankton. The influence of Typhoon Morakot led to an increase in primary productivity in the study area, resulting in a higher proportion of marine-sourced organic carbon in the sediments. Additionally, nearshore sediments experienced significant erosion and re-transport due to the dynamic effects of Typhoon Morakot, leading to a reduction in TOC content in the sediment. The differential response of sediment dynamics caused by the asymmetric wind field of typhoons with varying paths led to distinct impacts on material sources, marine biogeochemical processes, and sediment transport and modification processes within the same study area and thus had different impacts on the compositions and distributions of SOM. These findings provide a scientific basis for the comprehensive understanding of carbon burial in the coast and shelf under the influence of extreme marine dynamics.

  • [1]
    焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学: 地球科学, 2018, 48(11): 1393-1421

    JIAO Nianzhi, LIANG Yantao, ZHANG Yongyu, et al. Carbon pools and fluxes in the China Seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1535-1563.]
    [2]
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F
    [3]
    Burdige D J. Burial of terrestrial organic matter in marine sediments: a re-assessment[J]. Global Biogeochemical Cycles, 2005, 19(4):GB4011.
    [4]
    姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1):153-160

    YAO Peng, YU Zhigang, GUO Zhigang. Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Marine Geology & Quaternary Geology, 2013, 33(1):153-160.]
    [5]
    Tao S Q, Eglinton T I, Montluçon D B, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191:70-88. doi: 10.1016/j.gca.2016.07.019
    [6]
    高抒. 河流三角洲沉积体系再析[J]. 海洋地质与第四纪地质, 2023, 43(3):1-13

    GAO Shu. Revisiting the concept of river delta sedimentary systems[J]. Marine Geology & Quaternary Geology, 2023, 43(3):1-13.]
    [7]
    李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727 doi: 10.11693/hyhz20200500145

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):705-727.] doi: 10.11693/hyhz20200500145
    [8]
    Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151:1-15. doi: 10.1016/j.jseaes.2017.10.017
    [9]
    薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89 doi: 10.3969/j.issn.0253-4193.2018.05.007

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5):75-89.] doi: 10.3969/j.issn.0253-4193.2018.05.007
    [10]
    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18):2141-2156. doi: 10.1016/j.csr.2006.07.013
    [11]
    Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004
    [12]
    Li Y X, Yang D Z, Xu L J, et al. Three types of typhoon‐induced upwellings enhance coastal algal blooms: a case study[J]. Journal of Geophysical Research: Oceans, 2022, 127(5):e2022JC018448. doi: 10.1029/2022JC018448
    [13]
    Shiah F K, Chung S W, Kao S J, et al. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait[J]. Continental Shelf Research, 2000, 20(15):2029-2044. doi: 10.1016/S0278-4343(00)00055-8
    [14]
    Rao A D, Joshi M, Jain I, et al. Response of subsurface waters in the eastern Arabian Sea to tropical cyclones[J]. Estuarine, Coastal and Shelf Science, 2010, 89(4):267-276. doi: 10.1016/j.ecss.2010.07.011
    [15]
    Lin Y P, Li Y H, Zheng B X, et al. Evolution of sedimentary organic matter in a small river estuary after the typhoon process: a case study of Quanzhou Bay[J]. Science of the Total Environment, 2019, 686:290-300. doi: 10.1016/j.scitotenv.2019.05.452
    [16]
    Lin Y P, Li Y H, Liu M, et al. Typhoon Chan-Hom (2015) induced sediment cross-shore transport in the mud depo-center of the East China Sea inner shelf[J]. Marine Geology, 2024, 469:107223. doi: 10.1016/j.margeo.2024.107223
    [17]
    Lin Y P, Li Y H, Cong S, et al. Downcoast redistribution of Changjiang diluted water due to typhoon Chan‐Hom (2015)[J]. Journal of Geophysical Research: Oceans, 2023, 128(4):e2023JC019791. doi: 10.1029/2023JC019791
    [18]
    Wang B, Chen J F, Jin H Y, et al. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence[J]. Limnology and Oceanography, 2017, 62(4):1552-1569. doi: 10.1002/lno.10517
    [19]
    Lin I, Liu W T, Wu C C, et al. New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophysical Research Letters, 2003, 30(13):1718.
    [20]
    Li W J, Wang Z Y, Lee G H, et al. Ecological and sediment dynamics response to typhoons passing from the east and west sides of the Changjiang (Yangtze River) Estuary and its adjacent sea area[J]. Marine Geology, 2024, 467:107188. doi: 10.1016/j.margeo.2023.107188
    [21]
    Jan S, Wang J, Chern C S, et al. Seasonal variation of the circulation in the Taiwan Strait[J]. Journal of Marine Systems, 2002, 35(3-4):249-268. doi: 10.1016/S0924-7963(02)00130-6
    [22]
    Wu H, Deng B, Yuan R, et al. Detiding measurement on transport of the Changjiang-derived buoyant coastal current[J]. Journal of Physical Oceanography, 2013, 43(11):2388-2399. doi: 10.1175/JPO-D-12-0158.1
    [23]
    Zhu J R, Chen C S, Ding P X, et al. Does the Taiwan warm current exist in winter?[J]. Geophysical Research Letters, 2004, 31(12):L12302.
    [24]
    Hickox R, Belkin I, Cornillon P, et al. Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data[J]. Geophysical Research Letters, 2000, 27(18):2945-2948. doi: 10.1029/1999GL011223
    [25]
    He S Y, Huang D J, Zeng D Y. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China[J]. Journal of Marine Systems, 2016, 154:93-102. doi: 10.1016/j.jmarsys.2015.02.009
    [26]
    杨守业, 印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质, 2018, 38(1):1-10

    YANG Shouye, YIN Ping. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(1):1-10.]
    [27]
    Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China[J]. Continental Shelf Research, 2012, 37:92-100. doi: 10.1016/j.csr.2012.02.020
    [28]
    Li Y H, Ye X, Wang A J, et al. Impact of Typhoon Morakot on chlorophyll a distribution on the inner shelf of the East China Sea[J]. Marine Ecology Progress Series, 2013, 483:19-29. doi: 10.3354/meps10223
    [29]
    Li Y H, Li D Y, Fang J Y, et al. Impact of Typhoon Morakot on suspended matter size distributions on the East China Sea inner shelf[J]. Continental Shelf Research, 2015, 101:47-58. doi: 10.1016/j.csr.2015.04.007
    [30]
    Li Y H, Lin Y P, Wang L. Distribution of heavy metals in seafloor sediments on the East China Sea inner shelf: seasonal variations and typhoon impact[J]. Marine Pollution Bulletin, 2018, 129(2):534-544. doi: 10.1016/j.marpolbul.2017.10.027
    [31]
    Li Y H, Wang L, Fan D J, et al. Distribution of biogenic silica in seafloor sediments on the East China Sea inner shelf: seasonal variations and typhoon impact[J]. Estuarine, Coastal and Shelf Science, 2018, 212:353-364. doi: 10.1016/j.ecss.2018.07.023
    [32]
    Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1-2):111-126. doi: 10.1016/j.marchem.2007.02.003
    [33]
    Li X X, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 2012, 145-147:37-52. doi: 10.1016/j.marchem.2012.10.001
    [34]
    Cifuentes L A, Eldridge P M. A mass- and isotope-balance model of DOC mixing in estuaries[J]. Limnology and Oceanography, 1998, 43(8):1872-1882. doi: 10.4319/lo.1998.43.8.1872
    [35]
    Milliman J D, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean[J]. American Journal of Science, 1984, 284(7):824-834. doi: 10.2475/ajs.284.7.824
    [36]
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3-4):289-302. doi: 10.1016/0009-2541(94)90059-0
    [37]
    杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2):81-90

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. Macro-patterns of suspended matters transported from the Yellow Sea and East China Sea Shelf to its eastern deep sea[J]. Acta Oceanologica Sinica, 1992, 14(2):81-90.]
    [38]
    Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf[J]. Marine Geology, 2021, 440:106578. doi: 10.1016/j.margeo.2021.106578
    [39]
    Zhang W Y, Cui Y S, Santos A I, et al. Storm‐driven bottom sediment transport on a high‐energy narrow shelf (NW Iberia) and development of mud depocenters[J]. Journal of Geophysical Research: Oceans, 2016, 121(8):5751-5772. doi: 10.1002/2015JC011526
    [40]
    Zhang W Z, Hong H S, Shang S P, et al. Strong southward transport events due to typhoons in the Taiwan Strait[J]. Journal of Geophysical Research: Oceans, 2009, 114(C11):C11013.
    [41]
    Huang Y G, Yang H F, Wang Y P, et al. Swell-driven sediment resuspension in the Yangtze Estuary during tropical cyclone events[J]. Estuarine, Coastal and Shelf Science, 2022, 267:107765. doi: 10.1016/j.ecss.2022.107765
    [42]
    王浩斌, 杨世伦, 杨海飞. 台风对长江口表层悬沙浓度的影响[J]. 华东师范大学学报: 自然科学版, 2019(2):195-208

    WANG Haobin, YANG Shilun, YANG Haifei. A study of the surficial suspended sediment concentration in response to typhoons in the Yangtze Estuary[J]. Journal of East China Normal University: Natural Science, 2019(2):195-208.]
    [43]
    Zang Z C, Xue Z G, Bao S W, et al. Numerical study of sediment dynamics during hurricane Gustav[J]. Ocean Modelling, 2018, 126:29-42. doi: 10.1016/j.ocemod.2018.04.002
    [44]
    Luo Z F, Zhu J R, Wu H, et al. Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas[J]. Journal of Geophysical Research: Oceans, 2017, 122(12):10073-10090. doi: 10.1002/2017JC013215
    [45]
    Choi S M, Seo J Y, Ha H K. Contribution of local erosion enhanced by winds to sediment transport in intertidal flat[J]. Marine Geology, 2023, 465:107171. doi: 10.1016/j.margeo.2023.107171
    [46]
    Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406:72-83. doi: 10.1016/j.margeo.2018.09.009
    [47]
    Pope E L, Talling P J, Carter L, et al. Damaging sediment density flows triggered by tropical cyclones[J]. Earth and Planetary Science Letters, 2017, 458:161-169. doi: 10.1016/j.jpgl.2016.10.046
    [48]
    Porcile G, Bolla Pittaluga M, Frascati A, et al. Typhoon-induced megarips as triggers of turbidity currents offshore tropical river deltas[J]. Communications Earth & Environment, 2020, 1:2.
    [49]
    Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan[J]. Marine Geology, 2017, 384:147-158. doi: 10.1016/j.margeo.2016.06.001
    [50]
    Xu K H, Mickey R C, Chen Q, et al. Shelf sediment transport during hurricanes Katrina and Rita[J]. Computers & Geosciences, 2016, 90:24-39.
    [51]
    Chen M, Li Y H, Qi H S, et al. The influence of season and Typhoon Morakot on the distribution of diatoms in surface sediments on the inner shelf of the East China Sea[J]. Marine Micropaleontology, 2019, 146:59-74. doi: 10.1016/j.marmicro.2019.01.003
  • Related Articles

    [1]CUI Yuhua, LIU Mengjia, HUANG Xiangtong, YANG Shouye, YUE Wei, ZHAO Xilin, JIN Guodong. Automatic identification of heavy mineral compositions in Zhejiang-Fujian rivers and implications for provenance analysis[J]. Marine Geology & Quaternary Geology, 2025, 45(1): 79-95. DOI: 10.16562/j.cnki.0256-1492.2024091801
    [2]YUAN Ping, WANG Houjie, BI Naishuang, WU Xiao, ZHANG Yong. Temporal and spatial variations of oceanic fronts and their impact on transportation and deposition of fine-grained sediments in the East China Shelf Seas[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 25-42. DOI: 10.16562/j.cnki.0256-1492.2019050602
    [3]MA Xiaohong, HAN Zongzhu, BI Shipu, HU Gang, ZHANG Yong, XU Chengfen. Heavy mineral composition in surface sediments of the Minjiang River estuary and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 87-95. DOI: 10.16562/j.cnki.0256-1492.2018.01.009
    [4]MIN Jianxiong, DING Dong, LI Guangxue, QIAO Lulu, LIU Shidong, LI Jianchao, AN Zhenzhen, PAN Jiehong. Distribution and Migration Pattern of Surficial Suspended Matter in Zhejiang and Fujian Mud Area Detected by Landsat Satellite Images[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 44-55. DOI: 10.16562/j.cnki.0256-1492.2017.02.005
    [5]ZHANG Huaijing, ZHAI Shikui, ZHOU Yonghua, YU Zenghui. DISTRIBUTIONS OF MERCURY AND METHYLMERCURY IN SEDIMENTS OF MIN-ZHE COASTAL AREA AND INFLUENCING FACTORS[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 163-174. DOI: 10.16562/j.cnki.0256-1492.2016.06.019
    [6]CHEN Bin, YIN Ping, XU Gang, LIU Jian. SUSPENDED SEDIMENT TRANSPORT PATTERNS IN THE ZHEJIANG INNER CONTINENTAL SHELF IN SUMMER[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 95-100. DOI: 10.16562/j.cnki.0256-1492.2016.06.012
    [7]GUO Lei, WEN Mingzheng, SHAN Hongxian, LIU Xiaolei, ZHANG Shaotong, WANG Zhenhao, JIA Yonggang. STUDY ON RE-SUSPENSION PROCESS OF SEABED SEDIMENT INDUCED BY WAVE[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 181-188. DOI: 10.16562/j.cnki.0256-1492.2016.05.019
    [8]HUANG Long, ZHANG Zhixun, GENG Wei, WANG Zhongbo, LU Kai, LI Yang. GRAIN SIZE OF SURFACE SEDIMENTS IN THE EASTERN MIN-ZHE COAST: AN INDICATOR OF SEDIMENTARY ENVIRONMENTS[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 161-169. DOI: 10.3724/SP.J.1140.2014.06161
    [9]LIU Ying, ZHAI Shikui, LI Jun. DEPOSITIONAL RECORDS IN THE MUD AREAS OF CHANGJIANG ESTUARY AND OFF MIN-ZHE COAST AND THEIR INFLUENCE FACTORS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 1-10. DOI: 10.3724/SP.J.1140.2010.05001
    [10]SHI Xuefa, LIU Shengfa, QIAO Shuqing, LIU Yanguang, FANG Xisheng, WU Yonghua, ZhU Zhiwei. DEPOSITIONAL FEATURES ANG PALAEOENVIRONMENTAL RECORDS OF THE MUD DEPOSITS IN MIN-ZHE COASTAL MUD AREA,EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 19-30. DOI: 10.3724/SP.J.1140.2010.04019

Catalog

    Article views (97) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return