Citation: | MA Yue,TIAN Jun,LI Yang. The Southern Ocean mechanism of the Late Pleistocene glacial cycling and its implications for the formation of the northern hemisphere ice sheet[J]. Marine Geology & Quaternary Geology,2024,44(4):1-15. DOI: 10.16562/j.cnki.0256-1492.2024011702 |
It has been generally believed that the Southern Ocean has played an important role in modulating glacial/interglacial changes of the atmospheric partial pressure of carbon dioxide (pCO2) during the Late Pleistocene. In the late Pleistocene, the atmospheric pCO2 during the glacial periods was about 90×10−6 lower than that during the interglacial periods. Furthermore, in around 2.7 Ma, with the intensification of the Northern Hemisphere Glaciation (iNHG), the amplitude of glacial cycles increased, while the atmospheric pCO2 greatly decreased. Exploring the reasons for the decline in atmospheric pCO2 during the Late Pleistocene glaciation and the iNHG period is of great significance for constructing a complete theory of the Ice Ages. We combined the records of ocean currents, sea ice, and productivity in the Subantarctic Antarctic Zone (SAZ) in the northern part of the Southern Ocean and the Antarctic Zone (AZ) in the southern part of the Southern Ocean during the Late Pleistocene glaciation, investigated the possible carbon storage mechanisms in these two regions during this period, and discussed the changes in the Southern Ocean currents and carbon reservoirs during the iNHG period by integrating geological records. We proposed that SAZ and AZ had different carbon storage mechanisms during ice ages. The enhancement of iron fertilization increased the biological pump efficiency in the SAZ, thus increasing ocean carbon sequestration. Meanwhile, in the AZ, weakened deep-water ventilation, sea ice expansion, and enhanced deep-sea stratification were the key mechanisms for enhancing deep-sea carbon sequestration. Additionally, records of ocean currents and carbon reservoirs during the iNHG period indicate that southern ocean sourced waters expanded significantly towards the deep North Atlantic and North Pacific, with an expansion of sea ice in the Southern Ocean, enhancement in iron fertilization, and the increase in the Pacific carbon reservoir. We infer that the Southern Ocean mechanisms of the Late Pleistocene ice glacial cycling had probably contributed greatly to the decrease in the atmospheric pCO2 during the period of the iNHG, which triggered the final formation of the northern hemisphere glaciation.
[1] |
Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693. doi: 10.1126/science.1059412
|
[2] |
Lisiecki L E, Raymo M E. A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1):PA1003. doi: 10.1029/2004PA001071
|
[3] |
Tian J, Wang P X, Cheng X R. Development of the East Asian monsoon and Northern Hemisphere glaciation: oxygen isotope records from the South China Sea[J]. Quaternary Science Reviews, 2004, 23(18-19):2007-2016. doi: 10.1016/j.quascirev.2004.02.013
|
[4] |
Tian J, Wang P X, Cheng X R, et al. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203(3-4):1015-1029. doi: 10.1016/S0012-821X(02)00923-8
|
[5] |
Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5952):620-623. doi: 10.1038/307620a0
|
[6] |
Kleiven H F, Jansen E, Fronval T, et al. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma)–ice-rafted detritus evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(3-4):213-223. doi: 10.1016/S0031-0182(01)00407-2
|
[7] |
Milankovitch M M. Canon of insolation and the iceage problem[M]. Koniglich Serbische Akademice Beograd Special Publication, 1941: 132.
|
[8] |
鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11):1164-1172 doi: 10.1360/N972015-01294
LU Huayu, WANG Yao. What causes the ice ages in the Late Pliocene and Pleistocene?[J]. Chinese Science Bulletin, 2016, 61(11):1164-1172.] doi: 10.1360/N972015-01294
|
[9] |
Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436. doi: 10.1038/20859
|
[10] |
Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302):47-55. doi: 10.1038/nature09149
|
[11] |
Sowers T, Bender M. Climate records covering the last deglaciation[J]. Science, 1995, 269(5221):210-214. doi: 10.1126/science.269.5221.210
|
[12] |
Shackleton N J. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289(5486):1897-1902. doi: 10.1126/science.289.5486.1897
|
[13] |
Broecker W S. Glacial to interglacial changes in ocean chemistry[J]. Progress in Oceanography, 1982, 11(2):151-197. doi: 10.1016/0079-6611(82)90007-6
|
[14] |
Sarmiento J L, Toggweiler J. A new model for the role of the oceans in determining atmospheric P CO2[J]. Nature, 1984, 308(5960):621-624. doi: 10.1038/308621a0
|
[15] |
Siegenthaler U, Wenk T. Rapid atmospheric CO2 variations and ocean circulation[J]. Nature, 1984, 308(5960):624-626. doi: 10.1038/308624a0
|
[16] |
Knox F, McElroy M B. Changes in atmospheric CO2: influence of the marine biota at high latitude[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D3):4629-4637. doi: 10.1029/JD089iD03p04629
|
[17] |
马浩, 王召民, 史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4):398-412
MA Hao, WANG Zhaomin, SHI Jiuxin. The role of the southern ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4):398-412.]
|
[18] |
Talley L D, Pickard G L, Emery W J, et al. Descriptive physical oceanography[M]. 6th ed. Boston: Academic Press, 2011: 1-511.
|
[19] |
Robinson R S, Sigman D M, DiFiore P J, et al. Diatom‐bound 15N/14N: new support for enhanced nutrient consumption in the ice age subantarctic[J]. Paleoceanography and Paleoclimatology, 2005, 20(3):PA3003.
|
[20] |
Cooke D W, Hays J D. Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals[M]//Craddock C. Antarctic Geoscience. Madison: University of Wisconsin Press, 1982: 1017-1025.
|
[21] |
Galbraith E D, Skinner L C. The biological pump during the last glacial maximum[J]. Annual Review of Marine Science, 2020, 12:559-586. doi: 10.1146/annurev-marine-010419-010906
|
[22] |
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q
|
[23] |
Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193):379-382. doi: 10.1038/nature06949
|
[24] |
Adams J M, Faure H, Faure-Denard L, et al. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present[J]. Nature, 1990, 348(6303):711-714. doi: 10.1038/348711a0
|
[25] |
Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806):859-869. doi: 10.1038/35038000
|
[26] |
Marinov I, Gnanadesikan A, Sarmiento J L, et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2[J]. Global Biogeochemical Cycles, 2008, 22(3):GB3007.
|
[27] |
Xie Y H, Tamsitt V, Bach L T. Localizing the southern ocean biogeochemical divide[J]. Geophysical Research Letters, 2022, 49(8):e2022GL098260. doi: 10.1029/2022GL098260
|
[28] |
Sigman D M, Fripiat F, Studer A S, et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific[J]. Quaternary Science Reviews, 2021, 254:106732. doi: 10.1016/j.quascirev.2020.106732
|
[29] |
Meredith M, Garabato A N. Ocean mixing[M]. Amsterdam: Elsevier, 2022: 1-369.
|
[30] |
DeVries T, Primeau F. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean[J]. Journal of Physical Oceanography, 2011, 41(12):2381-2401. doi: 10.1175/JPO-D-10-05011.1
|
[31] |
Talley L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports[J]. Oceanography, 2013, 26(1):80-97. doi: 10.5670/oceanog.2013.07
|
[32] |
Sverdrup H U. Hydrology, section 2, discussion[J]. BANZ Antarctic Research Expedition, 1921, 31: 88-126.
|
[33] |
Speer K, Rintoul S R, Sloyan B. The diabatic deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12):3212-3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2
|
[34] |
Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3):171-180. doi: 10.1038/ngeo1391
|
[35] |
Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography and Paleoclimatology, 2006, 21(2):PA2005.
|
[36] |
Ito T, Follows M J. Preformed phosphate, soft tissue pump and atmospheric CO2[J]. Journal of Marine Research, 2005, 63(4):813-839. doi: 10.1357/0022240054663231
|
[37] |
Marinov I, Gnanadesikan A, Toggweiler J R, et al. The southern ocean biogeochemical divide[J]. Nature, 2006, 441(7096):964-967. doi: 10.1038/nature04883
|
[38] |
Rae J W B, Zhang Y G, Liu X Q, et al. Atmospheric CO2 over the Past 66 million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026
|
[39] |
Toggweiler J R, Murnane R, Carson S, et al. Representation of the carbon cycle in box models and GCMs 2. Organic pump[J]. Global Biogeochemical Cycles, 2003, 17(1):1027.
|
[40] |
Hain M P, Sigman D M, Haug G H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model[J]. Global Biogeochemical Cycles, 2010, 24(4):GB4023.
|
[41] |
Martin J H. Glacial‐interglacial CO2 change: the iron hypothesis[J]. Paleoceanography, 1990, 5(1):1-13. doi: 10.1029/PA005i001p00001
|
[42] |
Martínez‐Garcia A, Rosell‐Melé A, Geibert W, et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma[J]. Paleoceanography and Paleoclimatology, 2009, 24(1):PA1207.
|
[43] |
Kumar N, Anderson R, Mortlock R, et al. Increased biological productivity and export production in the glacial Southern Ocean[J]. Nature, 1995, 378(6558):675-680. doi: 10.1038/378675a0
|
[44] |
Mortlock R A, Charles C D, Froelich P N, et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation[J]. Nature, 1991, 351(6323):220-223. doi: 10.1038/351220a0
|
[45] |
Venz K A, Hodell D A. New evidence for changes in Plio–Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182(3-4):197-220. doi: 10.1016/S0031-0182(01)00496-5
|
[46] |
François R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6654):929-935. doi: 10.1038/40073
|
[47] |
Robinson R S, Sigman D M. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic[J]. Quaternary Science Reviews, 2008, 27(9-10):1076-1090. doi: 10.1016/j.quascirev.2008.02.005
|
[48] |
Zeebe R E, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes[M]. Amsterdam: Elsevier, 2001: 1-346.
|
[49] |
Bouttes N, Paillard D, Roche D M. Impact of brine-induced stratification on the glacial carbon cycle[J]. Climate of the Past, 2010, 6(5):575-589. doi: 10.5194/cp-6-575-2010
|
[50] |
Massom R A, Harris P T, Michael K J, et al. The distribution and formative processes of latent-heat polynyas in East Antarctica[J]. Annals of Glaciology, 1998, 27:420-426. doi: 10.3189/1998AoG27-1-420-426
|
[51] |
Stephens B B, Keeling R F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations[J]. Nature, 2000, 404(6774):171-174. doi: 10.1038/35004556
|
[52] |
Von Deimling T S, Ganopolski A, Held H, et al. How cold was the last glacial maximum?[J]. Geophysical Research Letters, 2006, 33(14):L14709.
|
[53] |
MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum[J]. Nature Geoscience, 2009, 2(2):127-132. doi: 10.1038/ngeo411
|
[54] |
Crosta X, Pichon J J, Burckle L H. Reappraisal of Antarctic seasonal sea‐ice at the Last Glacial Maximum[J]. Geophysical Research Letters, 1998, 25(14):2703-2706. doi: 10.1029/98GL02012
|
[55] |
Ferrari R, Jansen M F, Adkins J F, et al. Antarctic sea ice control on ocean circulation in present and glacial climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(24):8753-8758.
|
[56] |
Streeter S S, Shackleton N J. Paleocirculation of the deep North Atlantic: 150, 000-year record of benthic foraminifera and oxygen-18[J]. Science, 1979, 203(4376):168-171. doi: 10.1126/science.203.4376.168
|
[57] |
Schmittner A, Gruber N, Mix A C, et al. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean[J]. Biogeosciences, 2013, 10(9):5793-5816. doi: 10.5194/bg-10-5793-2013
|
[58] |
Ravelo A C, Hillaire-Marcel C. Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[J]. Developments in Marine Geology, 2007, 1:735-764.
|
[59] |
Boyle E A, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215, 000 years: changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters, 1985, 76(1-2):135-150. doi: 10.1016/0012-821X(85)90154-2
|
[60] |
Curry W B, Oppo D W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean[J]. Paleoceanography and Paleoclimatology, 2005, 20(1):PA1017.
|
[61] |
Buchanan P J, Matear R J, Lenton A, et al. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle[J]. Climate of the Past, 2016, 12(12):2271-2295. doi: 10.5194/cp-12-2271-2016
|
[62] |
Jansen M F. Glacial ocean circulation and stratification explained by reduced atmospheric temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1):45-50.
|
[63] |
Shin S I, Liu Z Y, Otto‐Bliesner B L, et al. Southern Ocean sea‐ice control of the glacial North Atlantic thermohaline circulation[J]. Geophysical Research Letters, 2003, 30(2):1096.
|
[64] |
Adkins J F, McIntyre K, Schrag D P. The salinity, temperature, and δ18O of the glacial deep ocean[J]. Science, 2002, 298(5599):1769-1773. doi: 10.1126/science.1076252
|
[65] |
Skinner L C, Primeau F, Freeman E, et al. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2[J]. Nature Communications, 2017, 8(1):16010. doi: 10.1038/ncomms16010
|
[66] |
Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate[J]. Nature, 2004, 428(6978):59-63. doi: 10.1038/nature02357
|
[67] |
Watson A J, Vallis G K, Nikurashin M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2[J]. Nature Geoscience, 2015, 8(11):861-864. doi: 10.1038/ngeo2538
|
[68] |
Hurrell J W, Van Loon H. A modulation of the atmospheric annual cycle in the Southern Hemisphere[J]. Tellus A: Dynamic Meteorology and Oceanography, 1994, 46(3):325-338. doi: 10.3402/tellusa.v46i3.15482
|
[69] |
Moreno P I, Lowell T V, Jacobson G L Jr, et al. Abrupt vegetation and climate changes during the last glacial maximumand last termination in the chilean lake district: a case study from canal de la puntilla (41 s)[J]. Geografiska Annaler, Series A: Physical Geography, 1999, 81(2):285-311. doi: 10.1111/j.0435-3676.1999.00059.x
|
[70] |
Tschumi T, Joos F, Parekh P. How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study[J]. Paleoceanography and Paleoclimatology, 2008, 23(4):PA4208.
|
[71] |
Ai X E, Studer A S, Sigman D M, et al. Southern ocean upwelling, Earth’s obliquity, and glacial-interglacial atmospheric CO2 change[J]. Science, 2020, 370(6522):1348-1352. doi: 10.1126/science.abd2115
|
[72] |
Billups K, Channell J E T, Zachos J. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic[J]. Paleoceanography and Paleoclimatology, 2002, 17(1):1004.
|
[73] |
Mudelsee M, Raymo M E. Slow dynamics of the Northern Hemisphere glaciation[J]. Paleoceanography and Paleoclimatology, 2005, 20(4):PA4022.
|
[74] |
Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago[J]. Nature, 2005, 433(7028):821-825. doi: 10.1038/nature03332
|
[75] |
Zhang Y G, Pagani M, Liu Z H. A 12-million-year temperature history of the tropical Pacific Ocean[J]. Science, 2014, 344(6179):84-87.
|
[76] |
Zhang W F, Chen J, Ji J F, et al. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene[J]. Aeolian Research, 2016, 23:11-20. doi: 10.1016/j.aeolia.2016.09.004
|
[77] |
Zhou B, Shen C D, Sun W D, et al. Late Pliocene–Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning[J]. Geology, 2014, 42(12):1067-1070. doi: 10.1130/G36110.1
|
[78] |
Wu F L, Fang X M, Ma Y Z, et al. Plio–Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007, 257(1-2):160-169. doi: 10.1016/j.jpgl.2007.02.029
|
[79] |
Raymo M E. The initiation of Northern Hemisphere glaciation[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:353-383. doi: 10.1146/annurev.ea.22.050194.002033
|
[80] |
Abelmann A, Gersonde R, Spiess V. Pliocene—pleistocene paleoceanography in the Weddell Sea—siliceous microfossil evidence[M]//Bleil U, Thiede J. Geological History of the Polar Oceans: Arctic Versus Antarctic. Dordrecht: Springer, 1990: 729-759.
|
[81] |
Hodell D A, Ciesielski P F. Southern Ocean response to the intensification of Northern Hemisphere glaciation at 2.4 Ma[M]//Bleil U, Thiede J. Geological History of the Polar Oceans: Arctic Versus Antarctic. Dordrecht: Springer, 1990: 707-728.
|
[82] |
Hodell D A, Ciesielski P F. Stable isotopic and carbonate stratigraphy of the late Pliocene and Pleistocene of Hole 704A: eastern subantarctic South Atlantic[C]//Proceedings of the Ocean Drilling Program Scientific Results. 1991, 114: 409-435
|
[83] |
Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4):PA4213.
|
[84] |
Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records[J]. Earth and Planetary Science Letters, 2010, 292(1-2):201-211. doi: 10.1016/j.jpgl.2010.01.037
|
[85] |
Haug G H, Tiedemann R J N. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686):673-676. doi: 10.1038/31447
|
[86] |
Haug G H, Sigman D M, Tiedemann R, et al. Onset of permanent stratification in the subarctic Pacific Ocean[J]. Nature, 1999, 401(6755):779-782. doi: 10.1038/44550
|
[87] |
Haug G H, Tiedemann R, Zahn R, et al. Role of Panama uplift on oceanic freshwater balance[J]. Geology, 2001, 29(3):207-210. doi: 10.1130/0091-7613(2001)029<0207:ROPUOO>2.0.CO;2
|
[88] |
Lunt D J, Valdes P J, Haywood A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1):1-18.
|
[89] |
Klocker A, Prange M, Schulz M. Testing the influence of the Central American Seaway on orbitally forced Northern Hemisphere glaciation[J]. Geophysical Research Letters, 2005, 32(3):L03703.
|
[90] |
Schneider B, Schmittner A. Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling[J]. Earth and Planetary Science Letters, 2006, 246(3-4):367-380. doi: 10.1016/j.jpgl.2006.04.028
|
[91] |
Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509):1383-1387. doi: 10.1126/science.aba6853
|
[92] |
DeConto R M, Pollard D, Wilson P A, et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2008, 455(7213):652-656. doi: 10.1038/nature07337
|
[93] |
Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122. doi: 10.1038/359117a0
|
[94] |
Berner R A, Caldeira K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10):955-956. doi: 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
|
[95] |
Fang X M, Galy A, Yang Y B, et al. Paleogene global cooling–induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10):992-996. doi: 10.1130/G46422.1
|
[96] |
Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust–climate coupling over the past four million years[J]. Nature, 2011, 476(7360):312-315. doi: 10.1038/nature10310
|
[97] |
Andersson C, Warnke D A, Channell J E T, et al. The mid-Pliocene (4.3-2.6 Ma) benthic stable isotope record of the Southern Ocean: ODP Sites 1092 and 704, Meteor Rise[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182(3-4):165-181. doi: 10.1016/S0031-0182(01)00494-1
|
[98] |
Hodell D A, Venz‐Curtis K A. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9):Q09001.
|
[99] |
Whitehead J M, Wotherspoon S, Bohaty S M. Minimal Antarctic sea ice during the Pliocene[J]. Geology, 2005, 33(2):137-140. doi: 10.1130/G21013.1
|
[100] |
Frank M, Whiteley N, Kasten S, et al. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: evidence from Nd and Pb isotopes in ferromanganese crusts[J]. Palaeogeography and Palaeoclimatology, 2002, 17(2):1022.
|
[101] |
Hodell D A, Channell J E T. Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate[J]. Climate of the Past, 2016, 12(9):1805-1828. doi: 10.5194/cp-12-1805-2016
|
[102] |
Lang D C, Bailey I, Wilson P A, et al. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification[J]. Nature Geoscience, 2016, 9(5):375-379. doi: 10.1038/ngeo2688
|
[103] |
Jian Z M, Dang H W, Yu J M, et al. Changes in deep Pacific circulation and carbon storage during the Pliocene-Pleistocene transition[J]. Earth and Planetary Science Letters, 2023, 605:118020. doi: 10.1016/j.jpgl.2023.118020
|
[104] |
Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599:117868. doi: 10.1016/j.jpgl.2022.117868
|
[105] |
Cortese G, Gersonde R, Hillenbrand C D, et al. Opal sedimentation shifts in the World Ocean over the last 15 Myr[J]. Earth and Planetary Science Letters, 2004, 224(3-4):509-527. doi: 10.1016/j.jpgl.2004.05.035
|
[106] |
Hillenbrand C D, Ehrmann W. Late neogene to quaternary environmental changes in the Antarctic Peninsula region: evidence from drift sediments[J]. Global and Planetary Change, 2005, 45(1-3):165-191. doi: 10.1016/j.gloplacha.2004.09.006
|
[107] |
Hillenbrand C D, Cortese G. Polar stratification: a critical view from the Southern Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 242(3-4):240-252. doi: 10.1016/j.palaeo.2006.06.001
|
[108] |
Woodard S C, Rosenthal Y, Miller K G, et al. Antarctic role in Northern Hemisphere glaciation[J]. Science, 2014, 346(6211):847-851. doi: 10.1126/science.1255586
|