LIU Xuan,CHEN Min,QI Hongshuai,et al. High-resolution record of biogenic silica and its paleoproductivity implication in the Chanthaburi coast, Gulf of Thailand over the last 9 000 aBP[J]. Marine Geology & Quaternary Geology,2024,44(6):121-129. DOI: 10.16562/j.cnki.0256-1492.2023070401
Citation: LIU Xuan,CHEN Min,QI Hongshuai,et al. High-resolution record of biogenic silica and its paleoproductivity implication in the Chanthaburi coast, Gulf of Thailand over the last 9 000 aBP[J]. Marine Geology & Quaternary Geology,2024,44(6):121-129. DOI: 10.16562/j.cnki.0256-1492.2023070401

High-resolution record of biogenic silica and its paleoproductivity implication in the Chanthaburi coast, Gulf of Thailand over the last 9 000 aBP

More Information
  • Received Date: July 03, 2023
  • Revised Date: September 23, 2023
  • Based on the LSC05 and WLE08 core samples obtained from the Chanthaburi coast of the Gulf of Thailand in 2017, the biogenic silica, total organic carbon, and AMS14 C dating were analyzed. High-resolution data including grain size and biogenic silica content were obtained to explore the changes of paleoproductivity in the Gulf of Thailand since 9 ka. Results show that the contents of biogenic silica in the samples were 0.41% ~1.56% (on average of 0.88%) for LSC05 and 0.60%~1.52% (on average of 1.11%) for WLE08, belonging to the low-value sea area of the South China Sea. This area was mainly affected by low supply of siliceous bones caused by the absence of upwelling in the study area, and the input dilution of regional inland-sourced materials. By comparing the biogenic silica content curve with the South Asian summer monsoon substitution index curve and the temperature anomaly curve in the South China Sea, we found that the high-value period of sea surface primary productivity corresponds to the period with high biogenic silica content, which might be due to the strong phased force of the summer monsoon. The organic carbon content curve confirmed the reconstruction results of paleoproductivity by biogenic silica. In addition, comparison between the biogenic silica content curve and the records of Greenland ice core, Dongge cave stalagmite, and Qunf cave in Oman stalagmite showed that the trend of paleoproductivity in the Gulf of Thailand was significantly correlated with the global environmental changes, reflecting the response of paleoenvironmental changes in the Gulf of Thailand to global environmental changes.

  • [1]
    刘素美, 张经. 沉积物中生物硅分析方法评述[J]. 海洋科学, 2002, 26(2):23-26 doi: 10.3969/j.issn.1000-3096.2002.02.009

    LIU Sumei, ZHANG Jing. A Study on the measurement of biogenic silica[J]. Marine Sciences, 2002, 26(2):23-26.] doi: 10.3969/j.issn.1000-3096.2002.02.009
    [2]
    赵颖翡, 刘素美, 叶曦雯, 等. 黄、东海柱状沉积物中生物硅含量的分析[J]. 中国海洋大学学报, 2005, 35(3): 423-428

    ZHAO Yingfei, LIU Sumei, YE Xiwen, et al. The Analysis of Biogenic Silica in the Sediments of the East China Sea and the Yellow Sea[J]. Periodical of Ocean University of China, 2002, 26(2): 23-26.]
    [3]
    Xu Y H, Wang L, Lai Z K, et al. The biogenic silica variation and paleoproductivity evolution in the eastern Indian Ocean during the past 20000 a[J]. Acta Oceanologica Sinica, 2019, 38(1):78-84. doi: 10.1007/s13131-019-1372-z
    [4]
    刘升发, 石学法, 刘焱光, 等. 近2 ka以来东海内陆架泥质区高分辨率的生物硅记录及其古生产力意义[J]. 沉积学报, 2011, 29(2):321-327

    LIU Shengfa, SHI Xuefa, LIU Yanguang, et al. High-Resolution Record of Biogenic Silica and Its Paleoproductivity Implication in Mud Area, East China Sea Inner Shelf over the Last 2000 Years BP[J]. Acta Sedimentologica Sinica, 2011, 29(2):321-327.]
    [5]
    Armbrust E V. The life of diatoms in the world's ocean[J]. Nature, 2009, 459:185-192. doi: 10.1038/nature08057
    [6]
    Tréguer P, Bowler C, Moriceau B, et al. Influence of diatom diversity on the ocean biological carbon pump[J]. Nature Geoscience, 2018, 11:27-37. doi: 10.1038/s41561-017-0028-x
    [7]
    Danelian T. Radiolarians in the Sedimentary Record[J]. Revue De Micropaléontologie, 2001, 47(1):53.
    [8]
    陈敏, 戚洪帅, 沈林南, 等. 海洋风暴沉积的微体生物研究进展[J]. 应用海洋学学报, 2022, 41(3):516-523 doi: 10.3969/J.ISSN.2095-4972.2022.03.016

    CHEN Min, QI Hongshuai, SHEN Linnan, et al. Research progress of microorganisms from marine storm deposits[J]. Journal of Applied Oceanography, 2022, 41(3):516-523.] doi: 10.3969/J.ISSN.2095-4972.2022.03.016
    [9]
    Sha L B, Li D L, Liu Y G, et al. Biogenic silica concentration as a marine primary productivity proxy in the Holsteinsborg Dyb, West Greenland, during the last millennium[J]. Acta Oceanologica Sinica, 2020, 39(9):78-85. doi: 10.1007/s13131-020-1648-3
    [10]
    王汝建, 翦知湣, 肖文申, 等. 南海第四纪的生源蛋白石记录: 与东亚季风、全球冰量和轨道驱动的联系[J]. 中国科学(D辑:地球科学), 2007, 37(4):521-533

    WANG Rujian, JIAN Zhimin, XIAO Wenshen, et al. Quaternary biogenic opal records in the South China Sea: Implications for the East Asian monsoon, global ice volume, and orbital forcing[J]. Science China(Series D:Earth Sciences), 2007, 37(4):521-533.]
    [11]
    Ragueneau O, Tréguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global Planetary Change, 2000, 26:317-365. doi: 10.1016/S0921-8181(00)00052-7
    [12]
    贾国东, 翦知湣, 彭平安, 等. 南海南部17962柱状样生物硅沉积记录及其古海洋意义[J]. 地球化学, 2000, 29(3):293-296 doi: 10.3321/j.issn:0379-1726.2000.03.014

    JIA Guodong, JIAN Zhimin, PENG Pingan, et al. Biogenic silica records in core 17962 from southern South China Seaand their relation to paleoceanographical events[J]. Geochimica, 2000, 29(3):293-296.] doi: 10.3321/j.issn:0379-1726.2000.03.014
    [13]
    邹杨浩, 冉莉华, Wiesner M G, 等. 140kaBP以来南海西南部上升流影响区沉积记录及其古海洋环境变化[J]. 海洋地质与第四纪地质, 2019, 39(2):123-133

    ZOU Yanghao, RAN Lihua, Wiesner M G, et al. Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140.000 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2):123-133.]
    [14]
    汪品先. 追踪边缘海的生命史: "南海深部计划"的科学目标[J]. 科学通报, 2012, 57(20):1807-1826 doi: 10.1360/csb2012-57-20-1807

    WANG Pinxian. Tracing the life history of a marginal Sea-On the“South China Sea Deep” Research Program[J]. Chinese Science Bulletin, 2012, 57(20):1807-1826.] doi: 10.1360/csb2012-57-20-1807
    [15]
    汪品先, 赵泉鸿. 十五万年来的南海: 南海晚第四纪古海洋学研究阶段报告[M]. 上海: 同济大学出版社, 1995: 1-4

    WANG Pinxian, ZHAO Quanhong. The South China Sea in the past 150, 000 years: A report on the Late Quaternary paleo-oceanographic study of the South China Sea[M]. Shanghai: Tongji University Press, 1995: 1-4.]
    [16]
    Shi X F, Liu SF, Fang X H, et al. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns[J]. Journal of Asian Earth Sciences, 2015, 105(4-5):390-398.
    [17]
    王承涛, 陈敏, 戚洪帅, 等. 中晚全新世泰国湾Chanthaburi海岸Welu河口区沉积物的敏感粒级组分及其对季风气候变化的指示意义[J]. 地球与环境, 2021, 49(5):480-491

    WANG Chengtao, CHEN Min, QI Hongshuai, et al. Sediment Sensitive Grain-size Fractions and Its Implication for Monsoon Variability during the Mid-late Holocene in the Welu Estuary of Chanthaburi Coast, Gulf of Thailand[J]. Earth and environment, 2021, 49(5):480-491.]
    [18]
    Duc D M, Mai T N, Chu V N, et al. Sediment distribution and transport at the nearshore zone of the Red River delta, Northern Vietnam[J]. Journal of Asian Earth Sciences, 2007, 29(4):558-565. doi: 10.1016/j.jseaes.2006.03.007
    [19]
    Ma Y W, Yang B, Zhou N, et al. Distribution and dissolution kinetics of biogenic silica in sediments of the northern South China Sea[J]. Frontiers in Marine Science, 2023, 10:1-15.
    [20]
    王汝建, 林隽, 郑连福, 等. 1993—1995年南海中部的硅质生物通量及其季节性变化: 季风气候和El Nino的响应[J]. 科学通报, 2000, 45(9):974-978 doi: 10.1360/csb2000-45-9-974

    WANG Jianru, LIN Jun, ZHENG Lianfu, et al. Siliceous biofluxes and their seasonal variations in the Central South China Sea from 1993 to 1995: monsoon climate and El Nino responses[J]. Chinese Science Bulletin, 2000, 45(9):974-978.] doi: 10.1360/csb2000-45-9-974
    [21]
    王汝建, 房殿勇, 邵磊, 等. 南海北部陆坡渐新世的蛋白石沉积[J]. 中国科学(D辑:地球科学), 2001, 31(10):867-872

    WANG Jianru, FANG Dianyong, SHAO Lei, et al. Oligocene opal deposits on the northern continental slope of the South China Sea[J]. Science China (Series D:Earth Sciences), 2001, 31(10):867-872.]
    [22]
    王汝建, 李建. 南海ODP1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J]. 科学通报, 2003, 48(1):74-77 doi: 10.3321/j.issn:0023-074X.2003.01.019

    WANG Jianru, LI Jian. The Quaternary high-resolution opal record at ODP1143 in the South China Sea and its paleoproductivity significance[J]. Chinese Science Bulletin, 2003, 48(1):74-77.] doi: 10.3321/j.issn:0023-074X.2003.01.019
    [23]
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A Oceanographic Research Papers, 1989, 36(9):1415-1426. doi: 10.1016/0198-0149(89)90092-7
    [24]
    Lyle M, Murray D W, Finney B P, et al. The record of Late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean[J]. Paleoceanography, 1988, 3(1):39-59. doi: 10.1029/PA003i001p00039
    [25]
    Demaster D J. The supply and accumulation of silica in the marine environment[J]. Geochimica Et Cosmochimica Acta, 1981, 45(10):1715-1732. doi: 10.1016/0016-7037(81)90006-5
    [26]
    Liu Z, Zhao Y, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153:238-273. doi: 10.1016/j.earscirev.2015.08.005
    [27]
    王承涛. 泰国湾尖竹汶海岸沉积物组成和分布特征及其环境意义[D]. 自然资源部第三海洋研究所

    WANG Chengtao. Grain-Size composition and distribution characteristics of sediments in the Chanthaburi coast, Gulf of Thailand and its environmental significance[D]. Third Institute of Oceanography, Ministry of Natural Resources.]
    [28]
    陈敏, 王承涛. 泰国尖竹汶海岸古环境演变历史研究(内部资料未发表)[M]. 自然资源部第三海洋研究所. 2019

    CHEN Min, WANG Chengtao. A study on the evolution history of the Ancient environment the Chanthaburi coast, Gulf of Thailand[M]. Third Institute of Oceanography, Ministry of Natural Resources.]
    [29]
    黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2): 163-170

    HUANG Yongjian, WANG Chengshan, WANG Yunfiang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2): 163-170.]
    [30]
    李丽, 王慧, 罗布次仁, 等. 南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义[J]. 海洋地质与第四纪地质, 2008, 28(6): 79-85

    LI Li, WANG Hui, LUO Burenci, et al. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40 ka[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 79-85.]
    [31]
    Wu B, Wu X D, Shi X F, et al. Influences of tropical monsoon climatology on the delivery and dispersal of organic carbon over the Upper Gulf of Thailand[J]. Marine Geology, 2020, 426:10629.
    [32]
    张兰兰, 陈木宏, 向荣, 等. 南海南部表层沉积物中生物硅的分布及其环境意义[J]. 热带海洋学报, 2007, 26(3):24-29 doi: 10.3969/j.issn.1009-5470.2007.03.004

    ZHANG Lanlan, CHEN Muhong, XIANG Rong, et al. Distribution of biogenic silica in surface sediments from southern South China Sea and its environmental significance[J]. Journal of Tropical Oceanography, 2007, 26(3):24-29.] doi: 10.3969/j.issn.1009-5470.2007.03.004
    [33]
    王琦, 朱而勤. 海洋沉积学[M]. 北京: 科学出版社, 1989: 1-253

    WANG Qi, ZHU Erqin. Marine Sedimentology[M]. Beijing: Science Press, 1989: 1-253.]
    [34]
    刘升发, 刘焱光, 于永贵, 等. 东海内陆架泥质区沉积物生物硅分布及其影响因素[J]. 海洋科学进展, 2014, 32(1):50-58

    LIU Shengfa, LIU Yanguang, YU Yonggui, et al. Distribution of Sedimentary Biogenic Silica in the Muddy Area of Inner Continental Shelf of the East China Sea and Its Influence Factors[J]. Advances in Marine Sciences, 2014, 32(1):50-58.]
    [35]
    Huang C Y, Wu S F, Zhao M X, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J]. Marine Micropaleontology, 1997, 32:71-94. doi: 10.1016/S0377-8398(97)00014-5
    [36]
    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284. doi: 10.1016/S0025-3227(98)00182-0
    [37]
    Akhir M F, Daud N R. Why South China Sea upwelling water does not enter the Gulf of Thailand?[J]. Geophysical Research Abstracts, 2018, 20.
    [38]
    Liu K, Chao S, Shaw P, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study[J]. Deep Sea Research Part I Oceanographic Research Papers, 2002, 49(8):1387-1412. doi: 10.1016/S0967-0637(02)00035-3
    [39]
    向菲, 王汝建, 李建如, 等. 越南岸外上升流区48万年来高分辨率的生源组分记录及其古海洋学意义[J]. 海洋地质与第四纪地质, 2006, 26(6): 81-89

    XIANG Fei, WANG Rujian, LI Jianru, et al. High-resolution records of biogenic componentsand their Paleoceanographic implications in the upper up-welling area of the South China Sea off eastern Viet-nam over past 480 ka[J]. Marine Geology &. Quaternary Geology, 2006, 26(6): 81-89. 」.
    [40]
    高学鲁, 陈绍勇, 马福俊, 等. 南沙群岛西部海域两柱状沉积物中碳和氮的分布和来源特征及埋藏通量估算[J]. 热带海洋学报, 2008, 27(3):38-44 doi: 10.3969/j.issn.1009-5470.2008.03.007

    Gao Xuelu, Chen Shaoyong, Ma Fujun, Dang Aicui, Long Aimin. Distribution and source characteristics of carbon and nitrogen and their burial fluxes in two core sediments from western Nansha Islands sea area[J]. Journal Of Tropical Oceanography, 2008, 27(3):38-44.] doi: 10.3969/j.issn.1009-5470.2008.03.007
    [41]
    刘瑞娟, 于培松, 扈传昱, 等. 南极普里兹湾沉积物中有机碳和总氮的含量与分布[J]. 海洋学报, 2014, 36(4):118-125

    Han Zhengbing, Pan Jianming, Liu Ruijuan, Yu Peisong, Hu Chuanyu. Contents and distributions of organic carbon and total nitrogen in sediments of Prydz Bay, Antarctic[J]. Acta Oceanologica Sinica, 2014, 36(4):118-125.]
    [42]
    李建, 王汝建. 南海北部一百万年以来的表层古生产力变化: 来自ODP1144站的蛋白石记录[J]. 地质学报, 2004, 78(2):228-233

    LI Jian, WANG Rujian. Paleoproductivity Variability of the Northern South China Sea duringthe Past 1 Ma: The Opal Record from ODP 1144[J]. Acta Geologica Sinica, 2004, 78(2):228-233.]
    [43]
    周鹏, 李冬梅, 李海涛, 等. 大亚湾西部海域沉积物中生物硅的含量及其分布特征[J]. 应用海洋学学报, 2019, 38(1):109-117

    ZHOU Peng, LI Dongmei, LI Haitao, et al. Biogenic silica contents and its distribution in the sediments of the west Daya Bay[J]. Journal of Applied Oceanography, 2019, 38(1):109-117.]
    [44]
    陈禹飞, 乔淑卿, 石学法, 等. 末次冰消期以来泰国湾沉积物物源变迁的元素地球化学证据[J]. 第四纪研究, 2020, 40(3):726-738 doi: 10.11928/j.issn.1001-7410.2020.03.11

    CHEN Yufei, QIAO Shuqing, SHI Xuefa, et al. Geochemical evidence for the sediment provenance evolution in the Gulf of Thailand since the last deglacial[J]. Quaternary Sciences, 2020, 40(3):726-738.] doi: 10.11928/j.issn.1001-7410.2020.03.11
    [45]
    侯立军, 刘敏, 闫惠敏, 等. 长江口潮滩沉积物生物硅的分布及其影响因素[J]. 中国环境科学, 2007, 27(5):665-669 doi: 10.3321/j.issn:1000-6923.2007.05.020

    HOU Lijun, LIU Min, YAN Huimin, et al. Distribution of biogenic silica in tidal flat sediments of Yangtze Estuary and its influence factors[J]. China Environmental Science, 2007, 27(5):665-669.] doi: 10.3321/j.issn:1000-6923.2007.05.020
    [46]
    梁宇钊, 冉莉华, 张兰兰. 中国海表层沉积生物硅含量与硅藻丰度空间分布规律[J]. 微体古生物学报, 2021, 38(1):112-130

    LIANG Yuzhao, RAN Lihua, ZHANG Lanlan, et al. The spatial distribution of biogenic silica content and diatomabundance in the surface sediments of the china seas[J]. Acta Micropalaeontologica Sinica, 2021, 38(1):112-130.]
    [47]
    张杨硕. 泰国湾 T93 孔沉积特征: 晚更新世以来古温度及东亚冬季风演化记录[D]. 国家海洋局第一海洋研究所

    ZHANG Yangshuo. Sediment Characteristics and Change of East Asian Winter Monsoon of Core T93 from Gulf of Thailand[D]. First Institute of Oceanography, Ministry of Natural Resources.]
    [48]
    Rujinard S, Pornsilp P, Thaithaworn L, et al. Population dynamics of green Noctiluca scintillans (Dinophyceae) associated with the monsoon cycle in the upper Gulf of Thailand[J]. Journal of Phycology, 2008(3):44.
    [49]
    Dan Ling Tang, Hiroshi Kawamura, Ping Shi, et al. Seasonal phytoplankton blooms associated with monsoonal influences and coastal environments in the sea areas either side of the Indochina Peninsula[J]. Journal of Geophysical Research: Biogeosciences, 2006.
    [50]
    Buranapratheprat A, Yanagi T, Matsumura S. Seasonal variation in water column conditions in the upper Gulf of Thailand[J]. Continental Shelf Research, 2008, 28(17):2509-2522. doi: 10.1016/j.csr.2008.07.006
    [51]
    Beget J E. Radiocarbon-dated evidence of worldwide early Holocene climate change[J]. Geology, 1983, 11(7):389-393. doi: 10.1130/0091-7613(1983)11<389:REOWEH>2.0.CO;2
    [52]
    Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3:578-583. doi: 10.1038/ngeo920
    [53]
    Grootes P M, Stuiver M. Oxygen 18/16 variability in Greenland snow and ice with 10-3 to 10-5 year time resolution[J]. Journal of Geophysical Research: Oceans, 1997.
    [54]
    Yongjin W, Hai C , Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
    [55]
    Fleitmann D, Burns S J, Mudelsee M, et al. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman[J]. Science, 2003, 300(5626):1737-1739. doi: 10.1126/science.1083130
    [56]
    袁帅, 张辉, 曹鹏, 等. 全新世以来泰国湾古气候演化历史-来自地球化学和矿物学证据[J]. 海洋科学进展, 2022, 40(2):233-246

    YUAN Shuai, ZHANG Hui, CAO Peng, et al. Holocene paleoclimate evolution in the Gulf of Thailand: evidence from geochemistry and mineralogy[J]. Advances in Marine Science, 2022, 40(2):233-246.]
    [57]
    翦知湣, 汪品先, 李保华, 等. 西太平洋晚全新世变冷事件[J]. 中国科学:D辑, 1996, 26(5):461-466

    JIAN Zhimin, WANG Pinxian, LI Baohua, et al. Late Holocene cooling event in the western Pacific[J]. Science China(Series D:Earth Sciences), 1996, 26(5):461-466.]

Catalog

    Article views (23) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return