YANG Huihui,ZHOU Youmin,ZHONG Yi,et al. Variations and mechanisms of the Asian summer monsoon revealed by stalagmite δ18O records[J]. Marine Geology & Quaternary Geology,2024,44(1):143-155. DOI: 10.16562/j.cnki.0256-1492.2023020801
Citation: YANG Huihui,ZHOU Youmin,ZHONG Yi,et al. Variations and mechanisms of the Asian summer monsoon revealed by stalagmite δ18O records[J]. Marine Geology & Quaternary Geology,2024,44(1):143-155. DOI: 10.16562/j.cnki.0256-1492.2023020801

Variations and mechanisms of the Asian summer monsoon revealed by stalagmite δ18O records

More Information
  • Received Date: February 07, 2023
  • Revised Date: June 30, 2023
  • Accepted Date: June 30, 2023
  • Available Online: September 06, 2023
  • The Asian summer monsoon is an important part of the global climate system and a hot issue of the earth system science. The variation of the Asian paleo-monsoon revealed by δ18O data from the Asian stalagmites deepens our understanding of the mechanisms of its spatiotemporal evolution. However, the main controlling factors of the stalagmite δ18O records in the East Asian and Indian summer monsoon regions in different time scales remain controversial. Aiming at this problem, we reviewed the high-resolution stalagmite δ18O records in the East Asian summer monsoon (EASM) and Indian summer monsoon (ISM) regions and revealed that they are in response to the variation in the Northern Hemisphere summer insolation driven by the precession on orbital scale. The specific mechanism involves the variation of zonal sea-land thermal contrast, seasonal humidity changes and cycles in low-level convergence, and the variation of summer length. These mechanisms jointly lead to increased summer rainfall with depleted δ18O in the EASM and ISM regions during high Northern Hemisphere summer insolation. On millennial scale, the stalagmite δ18O records in EASM and ISM regions are in response to the abrupt North Atlantic climate changes consistently, by mainly the weakening of water vapor fractionation in the Indian Ocean due to southward migration of the intertropical convergence zone (mainly influenced the ISM and EASM regions) and seasonal variation of water vapor sources and rainfall amount regulated by the westerly (mainly influenced the EASM region). Finally, at the centennial or shorter scale, the stalagmite δ18O records in both EASM and ISM regions are influenced by large-scale atmospheric circulation associated with EI Niño-Southern Oscillation. In the future, the development of more high-resolution stalagmite δ18O and other rainfall indicators records in key areas would facilitate our understanding of the relationship between atmospheric circulation and rainfall changes in the Asian summer monsoon region.

  • [1]
    安芷生, 吴国雄, 李建平, 等. 全球季风动力学与气候变化[J]. 地球环境学报, 2015, 6(6): 341-381

    AN Zhisheng, WU Guoxiong, LI Jianping, et al. Global monsoon dynamics and climate change[J]. Journal of Earth Environment, 2015, 6(6): 341-381.]
    [2]
    程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1565-1589

    CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, et al. Chinese stalagmite paleoclimate researches: a review and perspective[J]. Science China Earth Sciences, 2019, 62(10): 1489-1513.]
    [3]
    McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews, 2004, 23(7-8): 901-918. doi: 10.1016/j.quascirev.2003.06.021
    [4]
    Lachniet M S. Climatic and environmental controls on speleothem oxygen-isotope values[J]. Quaternary Science Reviews, 2009, 28(5-6): 412-432. doi: 10.1016/j.quascirev.2008.10.021
    [5]
    Cheng H, Sinha A, Wang X F, et al. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062. doi: 10.1007/s00382-012-1363-7
    [6]
    Atsawawaranunt K, Comas-Bru L, Mozhdehi S A, et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems[J]. Earth System Science Data, 2018, 10(3): 1687-1713. doi: 10.5194/essd-10-1687-2018
    [7]
    Comas-Bru L, Harrison S P. SISAL: bringing added value to speleothem research[J]. Quaternary, 2019, 2(1): 7. doi: 10.3390/quat2010007
    [8]
    Zhang H W, Brahim Y A, Li H Y, et al. The Asian summer monsoon: teleconnections and forcing mechanisms: a review from Chinese speleothem δ18O records[J]. Quaternary, 2019, 2(3): 26. doi: 10.3390/quat2030026
    [9]
    Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224 000 years[J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
    [10]
    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
    [11]
    Dansgaard W, Clausen H B, Gundestrup N, et al. A new Greenland deep ice core[J]. Science, 1982, 218(4579): 1273-1277. doi: 10.1126/science.218.4579.1273
    [12]
    Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434): 218-220. doi: 10.1038/364218a0
    [13]
    Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130 000 years[J]. Quaternary Research, 1988, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9
    [14]
    Hemming S R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1): RG1005.
    [15]
    Chen S T, Wang Y J, Cheng H, et al. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales[J]. Scientific Reports, 2016, 6: 32995. doi: 10.1038/srep32995
    [16]
    Dong J G, Shen C C, Kong X G, et al. Asian monsoon dynamics at Dansgaard/Oeschger events 14-8 and Heinrich events 5-4 in northern China[J]. Quaternary Geochronology, 2018, 47: 72-80. doi: 10.1016/j.quageo.2018.05.012
    [17]
    Duan W H, Cheng H, Tan M, et al. Onset and duration of transitions into Greenland Interstadials 15.2 and 14 in northern China constrained by an annually laminated stalagmite[J]. Scientific Reports, 2016, 6: 20844. doi: 10.1038/srep20844
    [18]
    Kathayat G, Cheng H, Sinha A, et al. Indian monsoon variability on millennial-orbital timescales[J]. Scientific Reports, 2016, 6: 24374. doi: 10.1038/srep24374
    [19]
    Zhang X, Qiu W Y, Jiang X Y, et al. Three-phase structure of the East Asia summer monsoon during Heinrich Stadial 4 recorded in Xianyun Cave, southeastern China[J]. Quaternary Science Reviews, 2021, 274: 107267. doi: 10.1016/j.quascirev.2021.107267
    [20]
    Qiu W Y, Zhang X, Jiang X Y, et al. Double-plunge structure of the East Asian summer monsoon during Heinrich stadial 1 recorded in Xianyun Cave, southeastern China[J]. Quaternary Science Reviews, 2022, 282: 107442. doi: 10.1016/j.quascirev.2022.107442
    [21]
    Li D, Tan L C, Cai Y J, et al. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon?[J]. Climate Dynamics, 2019, 53(5): 2969-2983.
    [22]
    Liang Y J, Zhao K, Edwards R L, et al. East Asian monsoon changes early in the last deglaciation and insights into the interpretation of oxygen isotope changes in the Chinese stalagmite record[J]. Quaternary Science Reviews, 2020, 250: 106699. doi: 10.1016/j.quascirev.2020.106699
    [23]
    Mi X, Liu D B, Wang Y J, et al. Spatial pattern of orbital-to millennial-scale East Asian stalagmite δ18O variations during MIS 3[J]. Quaternary Science Reviews, 2022, 298: 107844. doi: 10.1016/j.quascirev.2022.107844
    [24]
    谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义: 古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009, 29(5): 851-862

    TAN Ming. Circulation effect: climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.]
    [25]
    Tan M. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42(3-4): 1067-1077. doi: 10.1007/s00382-013-1732-x
    [26]
    Zhang H W, Cheng H, Spötl C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Reports, 2018, 8(1): 12344. doi: 10.1038/s41598-018-30112-6
    [27]
    Zhao J Y, Cheng H, Yang Y, et al. Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records[J]. Climate Dynamics, 2019, 52(5-6): 3741-3757. doi: 10.1007/s00382-018-4456-0
    [28]
    Zhang Z Q, Liang Y J, Wang Y J, et al. Evidence of ENSO signals in a stalagmite-based Asian monsoon record during the medieval warm period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110714. doi: 10.1016/j.palaeo.2021.110714
    [29]
    An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1-5): 171-187. doi: 10.1016/S0277-3791(99)00060-8
    [30]
    Ding Y H, Chan J C L. The East Asian summer monsoon: an overview[J]. Meteorology and Atmospheric Physics, 2005, 89(1-4): 117-142. doi: 10.1007/s00703-005-0125-z
    [31]
    周晓霞, 丁一汇, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 2008, 66(1): 59-70

    ZHOU Xiaoxia, DING Yihui, WANG Panxing. Moisture transpotr in Asian summer monsoon region and its relationship with summer precipitation in China[J]. Acta Meteorologica Sinica, 2008, 66(1): 59-70.]
    [32]
    Clemens S C, Prell W L, Sun Y B. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25(4): PA4207.
    [33]
    Shi Z G, Liu X D, Cheng X X. Anti-phased response of northern and southern East Asian summer precipitation to ENSO modulation of orbital forcing[J]. Quaternary Science Reviews, 2012, 40: 30-38. doi: 10.1016/j.quascirev.2012.02.019
    [34]
    National Centers for Environmental Prediction, National Weather Service, NOAA, et al. NCEP/NCAR global reanalysis products, 1948-continuing[R]. Research Data Archive at NOAA/PSL, 1994.
    [35]
    Liu Z Y, Wen X Y, Brady E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128. doi: 10.1016/j.quascirev.2013.10.021
    [36]
    Wang H J, Chen H P. Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12): D12109.
    [37]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [38]
    Turner A G, Annamalai H. Climate change and the South Asian summer monsoon[J]. Nature Climate Change, 2012, 2(8): 587-595. doi: 10.1038/nclimate1495
    [39]
    Kaushal N, Breitenbach S F M, Lechleitner F A, et al. The Indian summer monsoon from a speleothem δ18O perspective: a review[J]. Quaternary, 2018, 1(3): 29. doi: 10.3390/quat1030029
    [40]
    Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. doi: 10.1111/j.2153-3490.1964.tb00181.x
    [41]
    O’Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 1969, 51(12): 5547-5558. doi: 10.1063/1.1671982
    [42]
    Hendy C H. The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824. doi: 10.1016/0016-7037(71)90127-X
    [43]
    陈跃, 黄培华, 朱洪山. 北京周口店地区洞穴内第四纪石笋的同位素古温度研究[J]. 科学通报, 1986(20): 1576-1578

    CHEN Yue, HUANG Peihua, ZHU Hongshan. Study on isotopic paleotemperature of Quaternary Spleothem in caves in Zhoukoudian area, Beijing[J]. Chinese Science Bulletin, 1986(20): 1576-1578.]
    [44]
    Talma A S, Vogel J C. Late quaternary paleotemperatures derived from a speleothem from cango caves, cape province, South Africa[J]. Quaternary Research, 1992, 37(2): 203-213. doi: 10.1016/0033-5894(92)90082-T
    [45]
    Boch R, Spötl C, Kramers J. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria[J]. Quaternary Science Reviews, 2009, 28(23-24): 2527-2538. doi: 10.1016/j.quascirev.2009.05.015
    [46]
    刘东生, 谭明, 秦小光, 等. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J]. 第四纪研究, 1997, 17(1): 41-51

    LIU T, TAN Ming, QIN Xiaoguang, et al. Discovery of Microbedding in Speleothems in China and its significance in the study of Global change[J]. Quaternary Sciences, 1997, 17(1): 41-51.]
    [47]
    谭明, 刘东生, 秦小光, 等. 北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究[J]. 中国岩溶, 1997, 16(1): 1-10

    TAN Ming, LIU Dongsheng, QIN Xiaoguang, et al. Preliminary study on the data from Microbanding and Stable isotopes of Stalagmites of Beijing Shihua Cave[J]. Carsologica Sinica, 1997, 16(1): 1-10.]
    [48]
    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 249(5550): 2345-2348.
    [49]
    Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220
    [50]
    Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232. doi: 10.1016/j.jpgl.2007.10.015
    [51]
    Cheng T F, Lu M Q. Moisture source-receptor network of the East Asian summer monsoon land regions and the associated atmospheric steerings[J]. Journal of Climate, 2020, 33(21): 9213-9231. doi: 10.1175/JCLI-D-19-0868.1
    [52]
    Maher B A. Holocene variability of the east Asian summer monsoon from Chinese cave records: a re-assessment[J]. The Holocene, 2008, 18(6): 861-866. doi: 10.1177/0959683608095569
    [53]
    Maher B A, Thompson R. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime[J]. Journal of Quaternary Science, 2012, 27(6): 615-624. doi: 10.1002/jqs.2553
    [54]
    Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300(5626): 1737-1739. doi: 10.1126/science.1083130
    [55]
    Tan L C, Shen C C, Löwemark L, et al. Rainfall variations in central Indo-Pacific over the past 2, 700 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 16(35): 17201-17206.
    [56]
    Qiu H Y, Li T Y, Chen C J, et al. Significance of active speleothem δ18O at annual-decadal timescale: a case study from monitoring in Furong Cave[J]. Applied Geochemistry, 2021, 126: 104873. doi: 10.1016/j.apgeochem.2021.104873
    [57]
    Clemens S C, Prell W L. The timing of orbital-scale Indian monsoon changes[J]. Quaternary Science Reviews, 2007, 26(3-4): 275-278. doi: 10.1016/j.quascirev.2006.11.010
    [58]
    An Z S, Clemens S C, Shen J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723. doi: 10.1126/science.1203752
    [59]
    Burns S J, Fleitmann D, Matter A, et al. Speleothem evidence from Oman for continental pluvial events during interglacial periods[J]. Geology, 2001, 29(7): 623-626. doi: 10.1130/0091-7613(2001)029<0623:SEFOFC>2.0.CO;2
    [60]
    Kutzbach J E, Liu X D, Liu Z Y, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280, 000 years[J]. Climate Dynamics, 2008, 30(6): 567-579. doi: 10.1007/s00382-007-0308-z
    [61]
    Merlis T M, Schneider T, Bordoni S, et al. The tropical precipitation response to orbital precession[J]. Journal of Climate, 2013, 26(6): 2010-2021. doi: 10.1175/JCLI-D-12-00186.1
    [62]
    Battisti D S, Ding Q H, Roe G H. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(21): 11997-12020. doi: 10.1002/2014JD021960
    [63]
    Ruddiman W F. Orbital changes and climate[J]. Quaternary Science Reviews, 2006, 25(23-24): 3092-3112. doi: 10.1016/j.quascirev.2006.09.001
    [64]
    Chiang J C H, Fung I Y, Wu C H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111-129. doi: 10.1016/j.quascirev.2014.11.009
    [65]
    Li Y X, Rao Z G, Xu Q H, et al. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka[J]. Earth and Planetary Science Letters, 2020, 536: 116149. doi: 10.1016/j.jpgl.2020.116149
    [66]
    Zhou H Y, Zhao J X, Feng Y X, et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China[J]. Quaternary Research, 2008, 69(2): 306-315. doi: 10.1016/j.yqres.2007.11.001
    [67]
    Wu Y, Li T Y, Yu T L, et al. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234: 106261. doi: 10.1016/j.quascirev.2020.106261
    [68]
    Li T Y, Wu Y, Shen C C, et al. High precise dating on the variation of the Asian summer monsoon since 37 ka BP[J]. Scientific Reports, 2021, 11(1): 9375. doi: 10.1038/s41598-021-88597-7
    [69]
    Han L Y, Li T Y, Cheng H, et al. Potential influence of temperature changes in the Southern Hemisphere on the evolution of the Asian summer monsoon during the last glacial period[J]. Quaternary International, 2016, 392: 239-250. doi: 10.1016/j.quaint.2015.05.068
    [70]
    Li T Y, Han L Y, Cheng H, et al. Evolution of the Asian summer monsoon during Dansgaard/Oeschger events 13-17 recorded in a stalagmite constrained by high-precision chronology from southwest China[J]. Quaternary Research, 2017, 88(1): 121-128. doi: 10.1017/qua.2017.22
    [71]
    Jiang X Y, He Y Q, Shen C C, et al. Decoupling of the East Asian summer monsoon and Indian summer monsoon between 20 and 17 ka[J]. Quaternary Research, 2014, 82(1): 146-153. doi: 10.1016/j.yqres.2014.05.001
    [72]
    Liu D B, Wang Y J, Cheng H, et al. Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations[J]. Quaternary Science Reviews, 2010, 29(9-10): 1107-1115. doi: 10.1016/j.quascirev.2010.01.008
    [73]
    Zhang Z Q, Wang Y J, Liu D B, et al. Multi-scale variability of the Asian monsoon recorded in an annually-banded stalagmite during the Neoglacial from Qixing Cave, Southwestern China[J]. Quaternary International, 2018, 487: 78-86. doi: 10.1016/j.quaint.2017.08.072
    [74]
    Dutt S, Gupta A K, Clemens S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B. P. [J]. Geophysical Research Letters, 2015, 42(13): 5526-5532. doi: 10.1002/2015GL064015
    [75]
    Cosford J, Qing H R, Yuan D X, et al. Millennial-scale variability in the Asian monsoon: evidence from oxygen isotope records from stalagmites in southeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 266(1-2): 3-12. doi: 10.1016/j.palaeo.2008.03.029
    [76]
    Cai Y J, An Z S, Cheng H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8): 621-624. doi: 10.1130/G22567.1
    [77]
    Li H C, Bar-Matthews M, Chang Y P, et al. High-resolution δ18O and δ13C records during the past 65ka from Fengyu Cave in Guilin: variation of monsoonal climates in south China[J]. Quaternary International, 2017, 441: 117-128. doi: 10.1016/j.quaint.2016.08.048
    [78]
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805
    [79]
    Bradley R S, Diaz H F. Late quaternary abrupt climate change in the tropics and sub‐tropics: the continental signal of tropical hydroclimatic events (THEs)[J]. Reviews of Geophysics, 2021, 59(4): e2020RG000732.
    [80]
    Cheng H, Zhang H W, Spötl C, et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23408-23417. doi: 10.1073/pnas.2007869117
    [81]
    Dong B W, Sutton R T. Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation[J]. Geophysical Research Letters, 2002, 29(15): 1728.
    [82]
    Dahl K A, Broccoli A J, Stouffer R J. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective[J]. Climate Dynamics, 2005, 24(4): 325-346. doi: 10.1007/s00382-004-0499-5
    [83]
    Clement A C, Peterson L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46(4): RG4002.
    [84]
    Mohtadi M, Prange M, Oppo D W, et al. North Atlantic forcing of tropical Indian ocean climate[J]. Nature, 2014, 509(7498): 76-80. doi: 10.1038/nature13196
    [85]
    Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480. doi: 10.1038/ngeo1169
    [86]
    Tierney J E, Pausata F S R, deMenocal P. Deglacial Indian monsoon failure and North Atlantic Stadials linked by Indian Ocean surface cooling[J]. Nature Geoscience, 2016, 9(1): 46-50. doi: 10.1038/ngeo2603
    [87]
    Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature, 2003, 421(6921): 354-357. doi: 10.1038/nature01340
    [88]
    Deplazes G, Lückge A, Stuut J B W, et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 2014, 29(2): 99-114. doi: 10.1002/2013PA002509
    [89]
    Sijinkumar A V, Clemens S, Nath B N, et al. δ18O and salinity variability from the Last Glacial Maximum to Recent in the Bay of Bengal and Andaman Sea[J]. Quaternary Science Reviews, 2016, 135: 79-91. doi: 10.1016/j.quascirev.2016.01.022
    [90]
    Zorzi C, Goñi M F S, Anupama K, et al. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich stadial 2 and the last interglacial-glacial transition[J]. Quaternary Science Reviews, 2015, 125: 50-60. doi: 10.1016/j.quascirev.2015.06.009
    [91]
    Laîné A, Kageyama M, Salas-Mélia D, et al. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation[J]. Climate Dynamics, 2009, 32(5): 593-614. doi: 10.1007/s00382-008-0391-9
    [92]
    Schiemann R, Lüthi D, Schär C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region[J]. Journal of Climate, 2009, 22(11): 2940-2957. doi: 10.1175/2008JCLI2625.1
    [93]
    Yanase W, Abe-Ouchi A. The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations[J]. Climate of the Past, 2007, 3(3): 439-451. doi: 10.5194/cp-3-439-2007
    [94]
    Ono Y, Irino T. Southern migration of westerlies in the Northern Hemisphere PEP II transect during the Last Glacial Maximum[J]. Quaternary International, 2004, 118-119: 13-22. doi: 10.1016/S1040-6182(03)00128-9
    [95]
    Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1214-1220. doi: 10.1016/j.jseaes.2010.08.010
    [96]
    Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529): 305-308. doi: 10.1038/375305a0
    [97]
    Hsu H H, Lin S M. Asymmetry of the tripole rainfall pattern during the east Asian summer[J]. Journal of Climate, 2007, 20(17): 4443-4458. doi: 10.1175/JCLI4246.1
    [98]
    Sampe T, Xie S P. Large-scale dynamics of the Meiyu-Baiu Rainband: environmental forcing by the westerly jet[J]. Journal of Climate, 2010, 23(1): 113-134. doi: 10.1175/2009JCLI3128.1
    [99]
    Baker A J, Sodemann H, Baldini J U L, et al. Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(12): 5850-5862. doi: 10.1002/2014JD022919
    [100]
    Zhang H B, Griffiths M L, Chiang J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583. doi: 10.1126/science.aat9393
    [101]
    Chiang J C H, Herman M J, Yoshimura K, et al. Enriched East Asian oxygen isotope of precipitation indicates reduced summer seasonality in regional climate and westerlies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14745-14750. doi: 10.1073/pnas.1922602117
    [102]
    Zhang J W, Zhao K, Wang Y J, et al. Modulation of centennial-scale hydroclimate variations in the middle Yangtze River Valley by the East Asian-Pacific pattern and ENSO over the past two millennia[J]. Earth and Planetary Science Letters, 2021, 576: 117220. doi: 10.1016/j.jpgl.2021.117220
    [103]
    Huang R H, Liu Y, Du Z C, et al. Differences and links between the East Asian and South Asian summer monsoon systems: characteristics and variability[J]. Advances in Atmospheric Sciences, 2017, 34(10): 1204-1218. doi: 10.1007/s00376-017-7008-3
    [104]
    Sun Z, Yang Y, Zhao J Y, et al. Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China[J]. Journal of Hydrology, 2018, 566: 164-174. doi: 10.1016/j.jhydrol.2018.09.015
    [105]
    Neff U, Burns S J, Mangini A, et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J]. Nature, 2001, 411(6835): 290-293. doi: 10.1038/35077048
    [106]
    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
    [107]
    Wang X F, Duan W H, Tan M, et al. Variability of PDO identified by a last 300-year stalagmite δ18O record in Southwest China[J]. Quaternary Science Reviews, 2021, 261: 106947. doi: 10.1016/j.quascirev.2021.106947
    [108]
    Yang X L, Liu J B, Liang F Y, et al. Holocene stalagmite δ18O records in the East Asian monsoon region and their correlation with those in the Indian monsoon region[J]. The Holocene, 2014, 24(12): 1657-1664. doi: 10.1177/0959683614551222
    [109]
    Chen F H, Chen X M, Chen J H, et al. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674. doi: 10.1002/jqs.2735
    [110]
    Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004
    [111]
    Zhu Z M, Feinberg J M, Xie S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 852-857. doi: 10.1073/pnas.1610930114
    [112]
    Lascu I, Feinberg J M. Speleothem magnetism[J]. Quaternary Science Reviews, 2011, 30(23-24): 3306-3320. doi: 10.1016/j.quascirev.2011.08.004
    [113]
    Xie S C, Evershed R P, Huang X Y, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830. doi: 10.1130/G34318.1

Catalog

    Article views (408) PDF downloads (86) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return