Citation: | LI Xiang,YE Jun,LIU Xijun,et al. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology,2022,42(2):46-58. DOI: 10.16562/j.cnki.0256-1492.2021062301 |
[1] |
Corliss J B, Lyle M, Dymond J, et al. The chemistry of hydrothermal mounds near the Galapagos Rift [J]. Earth and Planetary Science Letters, 1978, 40(1): 12-24. doi: 10.1016/0012-821X(78)90070-5
|
[2] |
Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005.
|
[3] |
Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1
|
[4] |
Cherkashev G A, Ivanov V N, Bel’tenev V I, et al. Massive sulfide ores of the northern equatorial mid-atlantic ridge [J]. Oceanology, 2013, 53(5): 607-619. doi: 10.1134/S0001437013050032
|
[5] |
Augustin N, Lackschewitz K S, Kuhn T, et al. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N) [J]. Marine Geology, 2008, 256(1-4): 18-29. doi: 10.1016/j.margeo.2008.09.004
|
[6] |
石学法, 李兵, 叶俊, 等. 南大西洋中脊热液活动及形成机制[J]. 矿物学报, 2015, 35(S1):782-783
SHI Xuefa, LI Bing, YE Jun, et al. The hydrothermal activity and formation mechanism of the South Mid-Atlantic Ridge [J]. Acta Mieralogica Sinica, 2015, 35(S1): 782-783.
|
[7] |
杨耀民, 石学法. 南大西洋脊多金属硫化物热液区的预测与发现[J]. 矿物学报, 2011, 31(S1):708-709
YANG Yaomin, SHI Xuefa. Prediction and discovery of polymetallic sulfide hydrothermal area in South Atlantic Ridge [J]. Acta Mieralogica Sinica, 2011, 31(S1): 708-709.
|
[8] |
曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011
ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
|
[9] |
Humphris S E, Tivey M K, Tivey M A. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 8-16. doi: 10.1016/j.dsr2.2015.02.015
|
[10] |
Mccaig A M, Delacour A, Fallick A E, et al. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the tag hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 207-239.
|
[11] |
Escartín J, Mével C, Petersen S, et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1451-1482. doi: 10.1002/2016GC006775
|
[12] |
中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录-2017[M]. 北京: 海洋出版社, 2018
Office of China Ocean Mineral Resources Research and Development Association. Chinese Gazetteer of Undersea Features on the International Seabed-2017[M]. Beijing: Ocean Press, 2018.
|
[13] |
Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B7): 12527-12555. doi: 10.1029/95JB00610
|
[14] |
彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学:地球科学, 2005, 48(11):1891-1899 doi: 10.1360/04yd0029
PENG Xiaotong, ZHOU Huaiyang. Growth history of hydrothermal chimneys at EPR 9-10°N: A structural and mineralogical study [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1891-1899. doi: 10.1360/04yd0029
|
[15] |
Scott S D. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments [J]. Mineralogical Magazine, 1983, 47(345): 427-435. doi: 10.1180/minmag.1983.047.345.03
|
[16] |
Barton P B Jr, Bethke P M. Chalcopyrite disease in sphalerite: Pathology and epidemiology [J]. American Mineralogist, 1987, 72(5-6): 451-467.
|
[17] |
Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents [J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1
|
[18] |
Stroncik N A, Schmincke H U. Palagonite - a review [J]. International Journal of Earth Sciences, 2002, 91(4): 680-697. doi: 10.1007/s00531-001-0238-7
|
[19] |
Mozgova N N, Borodaev Y S, Gablina I F, et al. Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds [J]. Lithology and Mineral Resources, 2005, 40(4): 293-319. doi: 10.1007/s10987-005-0030-z
|
[20] |
Seyfried W E Jr, Ding K. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges[M]//Humphris W E Jr, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D. C. : Geophysical Monograph Series, 1995: 248-272.
|
[21] |
Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: a vertical section through the TAG mound[M]//Herzig P M, Humphris S E, Miller D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158. College Station, Tex. : The Program, 1998.
|
[22] |
Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic ridge [J]. Mineralium Deposita, 2006, 41(1): 52-67. doi: 10.1007/s00126-005-0040-8
|
[23] |
Alt J C, Honnorez J, Laverne C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B10): 10309-10335. doi: 10.1029/JB091iB10p10309
|
[24] |
Fouquet Y, Cambon P, Charlou J L, et al. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 321-367.
|
[25] |
陈曼云, 金巍, 郑常青, . 变质岩鉴定手册[M]. 北京: 地质出版社, 2009
CHEN Manyun, JIN Wei, ZHENG Changqing. Metamorphic Rock Identification Manual[M]. Beijing: Geological Press, 2009.
|
[26] |
李文渊. 现代海底热液成矿作用[J]. 地球科学与环境学报, 2010, 32(1):15-23
LI Wenyuan. Hydrothermal mineralization on the modern seafloor [J]. Journal of Earth Sciences and Environment, 2010, 32(1): 15-23.
|
[27] |
Stolz J, Large R R. Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania [J]. Economic Geology, 1992, 87(3): 720-738. doi: 10.2113/gsecongeo.87.3.720
|
[28] |
Lowell R P. Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Volume 188. Washington, D. C. : American Geophysical Union, 2010: 11-26.
|
[29] |
Pertsev A N, Bortnikov N S, Vlasov E A, et al. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic ridge, 13 31’N: associated rocks of the oceanic core complex and their hydrothermal alteration [J]. Geology of Ore Deposits, 2012, 54(5): 334-346. doi: 10.1134/S1075701512050030
|
[1] | LI Jinyue, HUANG Zhi, HU Zhiwei, ZHAO Shujuan, DAI Liming, YANG Yu, LI Fakun, ZHAN Huawang. Mesozoic multistage deformation and mechanism of the Central Bohai Bay Basin formation[J]. Marine Geology & Quaternary Geology, 2025, 45(1): 154-167. DOI: 10.16562/j.cnki.0256-1492.2023112206 |
[2] | YANG Yanqiu, YANG Changqing, YANG Chuansheng, SUN Jing. Mesozoic fault system in the Southern East China Sea Shelf Basin and its bearing on basin structures[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 52-61. DOI: 10.16562/j.cnki.0256-1492.2019080501 |
[3] | YANG Changqing, YANG Yanqiu, YANG Chuansheng, SUN Jing, WANG Jianqiang, XIAO Guolin, WANG Jiao, WANG Mingjian. Tectono-sedimentary evolution of the Mesozoic in the southern East China Sea Shelf Basin and its bearing on petroleum exploration[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 30-40. DOI: 10.16562/j.cnki.0256-1492.2019070305 |
[4] | TANG Xianjun, ZHANG Shaoliang, SHAN Rui. Mesozoic plate boundary in East China-Korean Peninsula: a revised model of plate indentation[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 79-87. DOI: 10.16562/j.cnki.0256-1492.2018.02.008 |
[5] | CUI Xing, WANG Liangliang, LUO Hongming, HUANG Xiaochun, LI Tinghui, YANG Chuansheng, DAI Liming, GUO Lingli, MA Fangfang, LIU Ze. SANDBOX MODELING TEST FOR MESOZOIC BASINS IN SOUTHERN EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-192. DOI: 10.16562/j.cnki.0256-1492.2017.04.012 |
[6] | LIU Ze, DAI Liming, LI Sanzhong, MA Fangfang, SUO Yanhui, GUO Lingli, TAO Jianli, YANG Chuansheng, ZHANG Jiaqi. NUMERICAL SIMULATION OF MESOZOIC TECTONIC PROCESSES IN THE SOUTHERN PART OF EAST CHINA SEA CONTINENTAL SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011 |
[7] | DU Yunkong, LIU Hailing, TAN Xiaodong, HAN Yulin, WU Yi, WU Chaohua, ZHAO Meisong. LATE PALEOZOIC TO MESOZOIC PALEOMAGNETIC RESULTS FROM HAINAN ISLAND AND ITS TECTONIC IMPLICATIONS FOR THE NORTHERN MARGIN OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 93-103. DOI: 10.3724/SP.J.1140.2013.06093 |
[8] | YANG Changqing, YANG Chuansheng, LI Gang, LIAO Jing, GONG Jianming. MESOZOIC TECTONIC EVOLUTION AND PROTOTYPE BASIN CHARACTERS IN THE SOUTHERN EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111. DOI: 10.3724/SP.J.1140.2012.03105 |
[9] | YAO Bochu, ZHANG Li, WEI Zhenquan, YI Hai, LIN Zhen, WAN Ling, WANG Wanyin, QIU Zhiyun, LI Chunfang. THE MESOZOIC TECTONIC CHARACTERISTICS AND SEDIMENTARY BASINS IN THE EASTERN MARGIN OF SOUTH CHINA[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 47-60. DOI: 10.3724/SP.J.1140.2011.03047 |
[10] | LOU Da, LI San-zhong, JIN Chong, ZHOU Yong-gang, LIU Bo, XU Shu-mei, DAI Li-ming, ZHOU Li-hong, GAO Zhen-ping. EVOLUTION OF THE MESOZOIC STRATA IN THE MIDDLE RANGE OF THE HUANGHUA DEPRESSION[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 43-53. |