LI Yanni,LI Peng,WU Xiao,et al. Tempo-spatial variation of wetlands at the Yellow River Mouth and its control factors [J]. Marine Geology & Quaternary Geology,2022,42(1):68-80. DOI: 10.16562/j.cnki.0256-1492.2021043001
Citation: LI Yanni,LI Peng,WU Xiao,et al. Tempo-spatial variation of wetlands at the Yellow River Mouth and its control factors [J]. Marine Geology & Quaternary Geology,2022,42(1):68-80. DOI: 10.16562/j.cnki.0256-1492.2021043001

Tempo-spatial variation of wetlands at the Yellow River Mouth and its control factors

More Information
  • Received Date: April 29, 2021
  • Revised Date: June 15, 2021
  • Available Online: January 26, 2022
  • Based on the long-term series data retrieved from the Landsat remote sensing images (1976—2020), this paper is devoted to the study of tempo-spatial variations of wetlands in the present Yellow River deltaic lobe since the last channel shifting in 1976. Significant differences in the distribution pattern of wetlands are observed for the present (Q8) and the abandoned (Qingshuigou) river mouths. The wetlands in the current deltaic lobe have experienced four stages of temporal and spatial variations with time, i.e the stages of rapid accretion, stable growing, rapid erosion and relatively stable. The wetland growth at the present active Q8 river mouth is primarily dominated by the water and sediment discharges from the upper reach of the river associated with sedimentation off the river mouth, particularly after the water-sediment regulation since 2002. In contrast, the spatial-temporal variation of the abandoned Qingshuigou wetlands is dominated by tidal and wave erosion induced by estuary dynamics. The wetland retreats rapidly together with the increasing coastal erosion and channel refilling, by which vegetation habitat on both sides of the abandoned channel are destroyed. In combination with the Yellow River’s water and sediment discharge, the dynamic mechanism dominating the wetland evolution is discussed in this paper, that is important to the countermeasures for future conservation and restoration of wetlands.
  • [1]
    孙广友. 中国湿地科学的进展与展望[J]. 地球科学进展, 2000, 15(6):666-672 doi: 10.3321/j.issn:1001-8166.2000.06.008

    SUN Guangyou. Development and prospect of wetland science in China [J]. Advances in Earth Science, 2000, 15(6): 666-672. doi: 10.3321/j.issn:1001-8166.2000.06.008
    [2]
    段晓男, 王效科, 尹弢, 等. 湿地生态系统固碳潜力研究进展[J]. 生态环境, 2006, 15(5):1091-1095

    DUAN Xiaonan, WANG Xiaoke, YIN Tao, et al. Advance in the studies on carbon sequestration potential of wetland ecosystem [J]. Ecology and Environment, 2006, 15(5): 1091-1095.
    [3]
    Schimel D S. Terrestrial ecosystems and the carbon cycle [J]. Global Change Biology, 1995, 1(1): 77-91. doi: 10.1111/j.1365-2486.1995.tb00008.x
    [4]
    陈亮, 何厚军, 申源, 等. 黄河三角洲湿地遥感监测与生态评估技术研究[M]. 郑州: 黄河水利出版社, 2015.

    CHEN Liang, HE Houjun, SHEN Yuan, et al. Research on Remote Sensing Monitoring and Ecological Assessment Technology of Wetland in Yellow River Delta[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2015.
    [5]
    安树青. 湿地生态工程: 湿地资源利用与保护的优化模式[M]. 北京: 化学工业出版社, 2003.

    AN Shuqing. Ecological Engineering of Wetland: Optimized Model for Utilization and Protection of Wetland Resources[M]. Beijing: Chemical Industry Press, 2003.
    [6]
    Wu X, Wang H J, Bi N S, et al. Evolution of a tide-dominated abandoned channel: a case of the abandoned Qingshuigou course, Yellow River [J]. Marine Geology, 2020, 422: 106116. doi: 10.1016/j.margeo.2020.106116
    [7]
    Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams [J]. Global and Planetary Change, 2006, 50(3-4): 212-225. doi: 10.1016/j.gloplacha.2006.01.005
    [8]
    Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities [J]. Global and Planetary Change, 2007, 57(3-4): 331-354. doi: 10.1016/j.gloplacha.2007.01.003
    [9]
    Wu X, Bi N S, Xu J P, et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976—2013): dominant roles of riverine discharge and sediment grain size [J]. Geomorphology, 2017, 292: 115-127. doi: 10.1016/j.geomorph.2017.04.042
    [10]
    徐振田, Ali S, 张莎, 等. 基于Landsat数据的黄河三角洲湿地提取及近30年动态研究[J]. 海洋湖沼通报, 2020(3):70-79

    XU Zhentian, Ali S, ZHANG Sha, et al. Mapping the wetland in Yellow River delta and its dynamics in recent 30 years based on Landsat data [J]. Transactions of Oceanology and Limnology, 2020(3): 70-79.
    [11]
    Beck P S A, Atzberger C, Høgda K A, et al. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI [J]. Remote Sensing of Environment, 2006, 100(3): 321-334. doi: 10.1016/j.rse.2005.10.021
    [12]
    贾维花, 廉丽姝, 吕宜平. 基于TM数据的黄河三角洲地区植被覆盖度提取[J]. 地理信息世界, 2012, 10(6):62-66, 74 doi: 10.3969/j.issn.1672-1586.2012.06.013

    JIA Weihua, LIAN Lishu, LV Yiping. The derivation of vegetation fraction based on TM data in Yellow River delta [J]. Geomatics World, 2012, 10(6): 62-66, 74. doi: 10.3969/j.issn.1672-1586.2012.06.013
    [13]
    李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4):153-159 doi: 10.3321/j.issn:1007-7588.2004.04.022

    LI Miaomiao, WU Bingfang, YAN Changzhen, et al. Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing [J]. Resources Science, 2004, 26(4): 153-159. doi: 10.3321/j.issn:1007-7588.2004.04.022
    [14]
    Wu X, Bi N S, Yuan P, et al. Sediment dispersal and accumulation off the present Huanghe (Yellow River) delta as impacted by the water-sediment regulation scheme [J]. Continental Shelf Research, 2015, 111: 126-138. doi: 10.1016/j.csr.2015.11.003
    [15]
    刘波, 彭相楷, 束龙仓, 等. 黄河三角洲清水沟湿地三次生态补水对地下水的影响分析[J]. 湿地科学, 2015, 13(4):393-399

    LIU Bo, PENG Xiangkai, SHU Longcang, et al. An analysis of effect of three water ecological diversions on groundwater of Qingshuigou wetlands in the Yellow River delta [J]. Wetland Science, 2015, 13(4): 393-399.
    [16]
    李晓敏, 张杰, 马毅, 等. 基于无人机高光谱的外来入侵种互花米草遥感监测方法研究: 以黄河三角洲为研究区[J]. 海洋科学, 2017, 41(4):98-107 doi: 10.11759/hykx20161102002

    LI Xiaomin, ZHANG Jie, MA Yi, et al. Study on monitoring alien invasive species Spartina alterniflora using unmanned aerial vehicle hyperspectral remote sensing- a case study of the Yellow River delta [J]. Marine Sciences, 2017, 41(4): 98-107. doi: 10.11759/hykx20161102002
  • Related Articles

    [1]DANG Yao, LIU Surui, WANG Houjie, LU Taian, WU Xiao, BI Naishuang, HU Limin. Distribution, source, and transport of particulate organic carbon in the Yellow River estuary as affected by the water-sediment regulation[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 120-130. DOI: 10.16562/j.cnki.0256-1492.2023012401
    [2]SONG Shasha, SUN Yongfu, SONG Yupeng, DU Xing, DONG Zhenfang. Nuclides distribution and sedimentary characteristics of the Diaokou course in Yellow River subaqueous delta[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 43-50. DOI: 10.16562/j.cnki.0256-1492.2019051401
    [3]LU Haohao, YANG Yang, TANG Jieping, CHEN Dezhi, XU Yao, WU Ziyin, FAN Haibo, WANG Yaping. Observation of near-bottom transport of suspended sediment in the offshore area of abandoned Yellow River mouth[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 38-48. DOI: 10.16562/j.cnki.0256-1492.2017082801
    [4]YANG Jiangping, LI Guangxue, XU Jishang. COASTAL EVOLUTION NEAR THE YELLOW RIVER MOUTH AND STABILITY ANALYSIS OF THE NEARBY ARTIFICIAL ISLAND[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 33-40. DOI: 10.3724/SP.J.1140.2013.02033
    [5]CHANG Fangqiang, JIA Yonggang. DISASTERS CAUSED BY WAVE-INDUCED SEDIMENT LIQUEFACTION AT THE YELLOW RIVER DELTA,CHINA[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 43-48. DOI: 10.3724/SP.J.1140.2011.02043
    [6]WANG Kunshan, SHI Xuefa, CAI Shanwu, QIAO Shuqing, JIANG Xiaoli. DISTRIBUTION AND PROVENANCE OF THE SURFACE SEDIMENTS OF THE YELLOW RIVER MOUTH AND LAIZHOU BAY DEDUCED FROM HEAVY MINERALS[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 1-8. DOI: 10.3724/SP.J.1140.2010.06001
    [7]CHEN Youyuan, WANG Junpeng, ZHAO Wenjuan, GAO Leijian, HUANG Tao, YAO Zijuan. THE EFFECT OF CALCIUM CARBONATE ON SEDIMENT AGGREGATION IN THE INTERTIDAL ZONE OF THE YELLOW RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 87-94. DOI: 10.3724/SP.J.1140.2010.04087
    [8]MI BeiBei, YAN Jun, ZHUANG Lihua, LUAN Zhendong. THE TOPOGRAPHICAL AND MORPHOLOGICAL FEATURES OF MODERN YELLOW RIVER MOUTH AREA AND THEIR RELATION TO EROSIONAL/DEPOSITIONAL PROCESSES[J]. Marine Geology & Quaternary Geology, 2010, 30(3): 31-38. DOI: 10.3724/SP.J.1140.2010.03031
    [9]CHANG Fang-qiang, MENG Xiang-mei, LIU Jing-kun, HE Feng, JIA Yong-gang. STATISTICAL ANALYSIS OF SOIL PROPERTY AT CHENGDAO SEA AREA IN ESTUARY OF YELLOW RIVER[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 35-40. DOI: 10.3724/SP.J.1140.2008.06035
    [10]YANG Xiu-juan, JIA Yong-gang, YUAN Hang, ZHANG Jian, ZHANG Yan-tao, FENG Chun-jian. CASE STUDY ABOUT THE AFFECTED AREA OF BARE PIPELINE ON THE SEABED SOIL IN YELLOW RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 27-33. DOI: 10.3724/SP.J.1140.2008.06027
  • Cited by

    Periodical cited type(5)

    1. 黄金廷,方拓,王强,王嘉玮,宋歌,张太平. 黄河三角洲典型植被–土壤主要营养成分特征分析. 西北地质. 2025(02): 41-50 .
    2. 杨卓媛,夏军强,宋红波,刘国强. 大型水库运用对河口尾闾河道出汊的影响研究. 人民黄河. 2024(04): 37-42 .
    3. 张馨,李雪,于君宝,栗云召,管博,周洁,凌越,马元庆. 黄河口滨海湿地不同景观类型的潮沟分布特征. 生态学杂志. 2023(09): 2218-2226 .
    4. 孙璐,单红仙,张红,刘汉露,贾永刚. 基于~(210)Pb、~(137)Cs分布和粒度特征的海床液化深度判定研究——以埕岛海域为例. 海洋学报. 2023(10): 105-113 .
    5. 张明亮. 滨海盐沼湿地退化机制及生态修复技术研究进展. 大连海洋大学学报. 2022(04): 539-549 .

    Other cited types(8)

Catalog

    Article views (1776) PDF downloads (145) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return