ZHAO Gege, TIAN Qingchun, DU Wuxi, PEI Yu, E Chongyi. End member model analysis of grain size for the loess in Linfen Basin, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 192-200. DOI: 10.16562/j.cnki.0256-1492.2020082601
Citation: ZHAO Gege, TIAN Qingchun, DU Wuxi, PEI Yu, E Chongyi. End member model analysis of grain size for the loess in Linfen Basin, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 192-200. DOI: 10.16562/j.cnki.0256-1492.2020082601

End member model analysis of grain size for the loess in Linfen Basin, China

More Information
  • Received Date: August 25, 2020
  • Revised Date: December 16, 2020
  • Available Online: January 26, 2021
  • In order to understand the grain size distribution pattern of the loess sediments and its bearing on climatic changes in the Linfen Basin on the southeastern margin of the Loess Plateau, the method of Parametric End-member Modeling was used to analyze the grain size data of the loess sediments through extraction of the grain-size fraction sensitive to climate changes. According to Shepard’s classification, the Loess-paleosol sequence in the Linfen Basin is mainly composed of silt and clayey silt. Three general Weibull distribution end members (EM) are recognized. Our results suggest that the EM1 may indicate the product of weathering and pedogenesis of loess under the influence of summer monsoon in the East Asia, while the EM2 indicate the remotely sourced dust by the high-altitude airflow under the control of the westerly belt. The EM3 represents near source dust brought by the East Asia winter monsoon and short-term dust storms in winter. Through the correlation with OSL results, grain size end-member of the loess, magnetic susceptibility and SPECMAP data, it is found that the oxygen isotope of Linfen Basin is consistent with that of SPECMAP, indicating that the climate evolution of the Basin is controlled by global ice amount. However, the internal fluctuation within each stage shows regional features.
  • [1]
    刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985: 1-192.

    LIU Tungsheng. Loess and Environment[M]. Beijing: Science Press, 1985: 1-192.
    [2]
    Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record [J]. Paleoceanography and Paleoclimatology, 2002, 17(3): 5-1-5-21.
    [3]
    An Z S. The history and variability of the East Asian paleomonsoon climate [J]. Quaternary Science Reviews, 2000, 19(1-5): 171-187. doi: 10.1016/S0277-3791(99)00060-8
    [4]
    Stuut J B W, Temmesfeld F, De Deckker P. A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments [J]. Quaternary Science Reviews, 2014, 83: 83-94. doi: 10.1016/j.quascirev.2013.11.003
    [5]
    Liu X X, Vandenberghe J, An Z S, et al. Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 41-51. doi: 10.1016/j.palaeo.2016.02.005
    [6]
    Zhang X N, Zhou A F, Wang X, et al. Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering [J]. Quaternary Research, 2018, 89(1): 365-373. doi: 10.1017/qua.2017.78
    [7]
    Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics [J]. Sedimentary Geology, 2003, 162(1-2): 39-62. doi: 10.1016/S0037-0738(03)00235-5
    [8]
    Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical bayesian end-member modeling analysis of sediment grain-size distributions [J]. Mathematical Geosciences, 2016, 48(6): 723-741. doi: 10.1007/s11004-015-9611-0
    [9]
    Rea D K, Hovan S A. Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific [J]. Paleoceanography and Paleoclimatology, 1995, 10(2): 251-258.
    [10]
    Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem [J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085
    [11]
    Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions [J]. Sedimentary Geology, 2007, 202(3): 409-424. doi: 10.1016/j.sedgeo.2007.03.007
    [12]
    王兆夺, 黄春长, 周亚利, 等. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3):293-304. [WANG Zhaoduo, HUANG Chunchang, ZHOU Yali, et al. Characteristics of Holocene loess-palaeosol particle size composition and paleoclimatic significance in East Guanzhong, Shaanxi Province [J]. Advances in Earth Science, 2018, 33(3): 293-304. doi: 10.11867/j.issn.1001-8166.2018.03.0293
    [13]
    王兆夺, 黄春长, 杨红瑾, 等. 六盘山东麓晚更新世以来黄土粒度指示的物源特征及演变[J]. 地理科学, 2018, 38(5):818-826. [WANG Zhaoduo, HUANG Chunchang, YANG Hongjin, et al. Loess provenance characteristics and evolution indicated by grain size since late pleistocene at the eastern foot of Liupan Mountains, China [J]. Scientia Geographica Sinica, 2018, 38(5): 818-826.
    [14]
    卫蕾华, 蒋汉朝, 何宏林, 等. 末次冰期山西洪洞高分辨率粒度和磁化率记录的H5事件及其气候演化意义[J]. 海洋地质与第四纪地质, 2018, 38(4):193-202. [WEI Leihua, JIANG Hanchao, HE Honglin, et al. Heinrich-5 Event revealed by high-resolution grain-size and magnetic susceptibility records and its significance of climate evolution in the last glacial at Hongtong, Shanxi, China [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 193-202.
    [15]
    田庆春, 杜五喜, 韩军青, 等. 末次间冰期以来临汾盆地气候演化特征: 以丁村古人类遗址东沟剖面为例[J]. 干旱区资源与环境, 2019, 33(12):139-144. [TIAN Qingchun, DU Wuxi, HAN Junqing, et al. Climate evolution of Linfen basin since the last interglacial period-Case study of Donggou section near the ancient human site of Dingcun [J]. Journal of Arid Land Resources and Environment, 2019, 33(12): 139-144.
    [16]
    鹿化煜, 安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学 D辑, 1998, 41(6):626-631. [LU Huayu, AN Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau [J]. Science in China Series D: Earth Science, 1998, 41(6): 626-631. doi: 10.1007/BF02878745
    [17]
    Paterson G A, Heslop D. New methods for unmixing sediment grain size data [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506. doi: 10.1002/2015GC006070
    [18]
    Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy [J]. Quaternary Research, 1987, 27(1): 1-29. doi: 10.1016/0033-5894(87)90046-9
    [19]
    贾兰坡. 山西襄汾县丁村人类化石及旧石器发掘报告[J]. 科学通报, 1955(1):46-51. [JIA Lanpo. Excavation report of human fossils and Paleolithic artifacts in Dingcun, Xiangfen county, Shanxi Province [J]. Chinese Science Bulletin, 1955(1): 46-51.
    [20]
    鹿化煜, 安芷生. 前处理方法对黄土沉积物粒度测量影响的实验研究[J]. 科学通报, 1997, 42(23):2535-2538. [LU Huayu, AN Zhisheng. Experimental study on the influence of pretreatment on grain size measurement of loess sediments [J]. Chinese Science Bulletin, 1997, 42(23): 2535-2538. doi: 10.3321/j.issn:0023-074X.1997.23.017
    [21]
    Thomsen K J, Jain M, Murray A S, et al. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation [J]. Radiation Measurements, 2008, 43(2-6): 752-757. doi: 10.1016/j.radmeas.2008.01.020
    [22]
    Buylaert J P, Jain M, Murray A S, et al. A robust feldspar luminescence dating method for middle and late Pleistocene sediments [J]. Boreas, 2012, 41(3): 435-451. doi: 10.1111/j.1502-3885.2012.00248.x
    [23]
    Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation [J]. Nature, 1995, 375(6529): 305-308. doi: 10.1038/375305a0
    [24]
    Lu Y C, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau [J]. Quaternary Research, 2007, 67(1): 152-160. doi: 10.1016/j.yqres.2006.08.003
    [25]
    聂高众, 刘嘉麒, 郭正堂. 渭南黄土剖面十五万年以来的主要地层界线和气候事件: 年代学方面的证据[J]. 第四纪研究, 1996, 16(3):221-231. [NIE Gaozhong, LIU Jiaqi, GUO Zhengtang. The major stratigraphic boundaries and climatic events in Weinan loess section since 0.15 Ma B. P.: based on chronological evidences [J]. Quaternary Sciences, 1996, 16(3): 221-231. doi: 10.3321/j.issn:1001-7410.1996.03.004
    [26]
    王中波, 何起祥, 杨守业, 等. 谢帕德和福克碎屑沉积物分类方法在南黄海表层沉积物编图中的应用与比较[J]. 海洋地质与第四纪地质, 2008, 28(1):1-8. [WANG Zhongbo, HE Qixiang, YANG Shouye, et al. Comparison and application of Shepard’s and folks’ classifications to the subsurface mapping in the south yellow sea [J]. Marine Geology & Quaternary Geology, 2008, 28(1): 1-8.
    [27]
    薛春汀. 两种碎屑沉积物分类的比较[J]. 海洋地质与第四纪地质, 1994, 14(2):109-113. [XUE Chunting. Comparison of two classifications of clastic sediments [J]. Marine Geology & Quaternary Geology, 1994, 14(2): 109-113.
    [28]
    Pye K, Tsoar H. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the Northern Negev, Israel [J]. Geological Society, London, Special Publication, 1987, 35(1): 139-156. doi: 10.1144/GSL.SP.1987.035.01.10
    [29]
    李帅, 杨胜利, 梁敏豪, 等. 青藏高原东部黄土粒度分布的端元模型研究[J]. 地球与环境, 2018, 46(4):331-338. [LI Shuai, YANG Shengli, LIANG Minhao, et al. The end member model analysis on grain size of loess in the eastern Tibetan plateau [J]. Earth and Environment, 2018, 46(4): 331-338.
    [30]
    孙东怀, 鹿化煜, REA D, et al. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2000, 18(3):327-335. [SUN Donghuai, LU Huayu, REA D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335. doi: 10.3969/j.issn.1000-0550.2000.03.001
    [31]
    孙东怀. 黄土粒度分布中的超细粒组分及其成因[J]. 第四纪研究, 2006, 26(6):928-936. [SUN Donghuai. Supper-fine grain size components in Chinese Loess and their palaeoclimatic implication [J]. Quaternary Sciences, 2006, 26(6): 928-936. doi: 10.3321/j.issn:1001-7410.2006.06.007
    [32]
    Qiang M, Lang L, Wang Z. Do fine-grained components of loess indicate westerlies: Insights from observations of dust storm deposits at Lenghu (Qaidam Basin, China) [J]. Journal of Arid Environments, 2010, 74(10): 1232-1239. doi: 10.1016/j.jaridenv.2010.06.002
    [33]
    Shao Y P, Wyrwoll K H, Chappell A, et al. Dust cycle: An emerging core theme in Earth system science [J]. Aeolian Research, 2011, 2(4): 181-204. doi: 10.1016/j.aeolia.2011.02.001
    [34]
    Vriend M, Prins M A, Buylaert J P, et al. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle [J]. Quaternary International, 2011, 240(1-2): 167-180. doi: 10.1016/j.quaint.2010.11.009
    [35]
    Pye K. Aeolian dust and dust deposits[M]. London: Academic Press, 1987.
    [36]
    Prins M A, Vriend M. Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records [J]. Geochemistry, Geophysics, Geosystems, 2013, 8(7): Q07Q05. doi: 10.1029/2006GC001563
    [37]
    冯兆东, 陈发虎, 张虎才, 等. 末次冰期-间冰期蒙古高原与黄土高原对全球变化的重要贡献[J]. 中国沙漠, 2000, 20(2):171-177. [FENG Zhaodong, CHEN Fahu, ZHANG Hucai, et al. Contribution to global change of Mongolian plateau and loess plateau in the last glaciation and interglacial periods [J]. Journal of Desert Research, 2000, 20(2): 171-177. doi: 10.3321/j.issn:1000-694X.2000.02.014
    [38]
    Ding Z L, Ren J Z, Yang S L, et al. Climate instability during the penultimate glaciation: evidence from two high-resolution loess records, China [J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B9): 20123-20132. doi: 10.1029/1999JB900183
    [39]
    Sun D H, Wu X H, Liu T S. Evolution of the summer monsoon regime over the Loess Plateau of the last 150 ka [J]. Science in China (Series D), 1996, 39(5): 503-511.
    [40]
    管清玉. 末次冰期旋回气候高度不稳定性研究[D]. 兰州: 兰州大学, 2006.

    GUAN Qingyu. A study of the highly unstable climate in last glacial cycle[D]. Lanzhou: Lanzhou University, 2006.
    [41]
    谢一璇, 杨小强, 张伙带, 等. 西太平洋深海沉积物记录的~80 ka以来风尘物质输入与东亚冬季风强度[J]. 古地理学报, 2019, 21(5):855-868. [XIE Yixuan, YANG Xiaoqiang, ZHANG Huodai, et al. Eolian input and East Asian winter monsoon records in deep-sea sediment from Western Pacific since ~80 ka [J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(5): 855-868. doi: 10.7605/gdlxb.2019.05.058
  • Cited by

    Periodical cited type(8)

    1. 赵汉卿,李超,郭诚,陈晓明,张博. 渤海湾盆地莱州湾凹陷沙三上段近源砂质辫状河三角洲沉积特征. 世界地质. 2024(01): 37-46 .
    2. 袁瑞,冯文杰,张昌民,赵康,刘家乐,付文俊,王泽宇,孟庆昊,王令辉. 长江武汉段天兴洲低滩沉积物粒度端元对河流—风成沙丘沉积环境的指示意义. 地质论评. 2024(02): 436-448 .
    3. 刘亮,杨艺凝,许姗,贾飞飞,张威,魏东岚,柴乐,马瑞丰. 辽南晚更新世风成沉积序列与古气候意义. 第四纪研究. 2024(02): 380-393 .
    4. 董莉丽,杨波. 基于参数法的西汉帝陵封土土壤粒度端元分析. 咸阳师范学院学报. 2023(04): 46-52 .
    5. 王巍,赵国永,张柯凡,潘航,陈渠. 三门峡地区黄土-古土壤序列物源分析与环境意义. 绿色科技. 2023(24): 90-98 .
    6. 王思齐,魏东岚,张威. 末次冰期以来辽东半岛风沙沉积的粒度端元特征与古气候演变研究. 第四纪研究. 2022(02): 338-349 .
    7. 田庆春,郝晓龙,韩军青,石小静,尹佳男. 临汾盆地黄土沉积微量元素地球化学特征及其气候意义. 干旱区资源与环境. 2022(05): 87-93 .
    8. 潘昭烨,张玉柱,黄春长,庞奖励,查小春,周亚利,朱艳,贾雅娜,王浩宇,陈豆,肖奇立,王春梅. 汉江上游罗家滩剖面晚更新世以来沉积物粒度端元分析. 地球环境学报. 2022(06): 702-713 .

    Other cited types(9)

Catalog

    Article views (2308) PDF downloads (148) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return