SUN Xingquan, LIU Shengfa, LI Jingrui, CAO Peng, ZHANG Hui, ZHAO Guangtao, Somkiat Khokiattiwong, Narumol Kornkanitnan, SHI Xuefa. Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 80-89. DOI: 10.16562/j.cnki.0256-1492.2019102801
Citation: SUN Xingquan, LIU Shengfa, LI Jingrui, CAO Peng, ZHANG Hui, ZHAO Guangtao, Somkiat Khokiattiwong, Narumol Kornkanitnan, SHI Xuefa. Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 80-89. DOI: 10.16562/j.cnki.0256-1492.2019102801

Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance

More Information
  • Received Date: October 27, 2019
  • Revised Date: December 17, 2019
  • Available Online: April 14, 2020
  • Rare earth element (REE) compositions and their spatial distribution pattern for 98 surface sediment samples collected from the southern part of the Bay of Bengal are carefully studied in this paper. The main sources of sediments are identified and the sediment transport modes discussed in combination with the hydrodynamic environment features. The results suggest that the total concentrations of rare earth elements in the surface sediments of the study area vary between 67.62 μg/g and 180.67 μg/g, with an average at 100.85 μg/g. The samples are rich in light REE and uniform in heavy REE with an obvious negative anomaly of Eu. Based on the major parameters of REE, the study area can be subdivided into two provinces, the province Ι located in the west part of the study area and the province Ⅱ located in the east. According to the chondrite-normalized La/Yb-Sm/Nd diagram for provenance identification, most of the surface sediments of the study area is provided by the erosion of the Himalayan Mountain and transported by the Ganges-Brahmaputra River. The subordinate source is the Indian Peninsula, of which the sediments were transported by the Godavari River-Krishna River in the province Ι located in the west part of the study area. The transportation of sediments in different source areas is mainly controlled by the seasonal surface circulation driven by the Indian monsoon system.
  • [1]
    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean[M]. New York: Cambridge University Press, 2011.
    [2]
    李景瑞, 刘升发, 冯秀丽, 等. 孟加拉湾中部表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):41-50. [LI Jingrui, LIU Shengfa, FENG Xiuli, et al. Rare earth element geochemistry of surface sediments in mid-Bengal Bay and implications for provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 41-50.
    [3]
    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine & Petroleum Geology, 2002, 19(10): 1191-1223.
    [4]
    Curray J R, Moore D G. Growth of the Bengal deep-sea fan and denudation in the Himalayas [J]. Geological Society of America Bulletin, 1971, 82(3): 563-572. doi: 10.1130/0016-7606(1971)82[563:GOTBDF]2.0.CO;2
    [5]
    Kolla V, Moore D G, Curray J R. Recent bottom-current activity in the deep western Bay of Bengal [J]. Marine Geology, 1976, 21(4): 255-270. doi: 10.1016/0025-3227(76)90010-4
    [6]
    Schott F A, McCreary J P Jr. The monsoon circulation of the Indian Ocean [J]. Progress in Oceanography, 2001, 51(1): 1-123. doi: 10.1016/S0079-6611(01)00083-0
    [7]
    Joussain R, Colin C, Liu Z F, et al. Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle [J]. Quaternary Science Reviews, 2016, 148: 1-16. doi: 10.1016/j.quascirev.2016.06.016
    [8]
    Xue P F, Chang L, Wang S S, et al. Magnetic mineral tracing of sediment provenance in the central Bengal Fan [J]. Marine Geology, 2019, 415: 105955. doi: 10.1016/j.margeo.2019.05.014
    [9]
    Tripathy G R, Singh S K, Ramaswamy V. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397: 20-30. doi: 10.1016/j.palaeo.2013.04.012
    [10]
    Venkatarathnam K, Biscaye P E. Clay mineralogy and sedimentation in the eastern Indian Ocean [J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(8): 727-738. doi: 10.1016/0011-7471(73)90088-0
    [11]
    Iyer S D, Gupta S M, Charan S N, et al. Volcanogenic-hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin [J]. Marine Geology, 1999, 158(1-4): 15-25. doi: 10.1016/S0025-3227(98)00167-4
    [12]
    Weber M E, Wiedicke-Hombach M, Kudrass H R, et al. Bengal Fan sediment transport activity and response to climate forcing inferred from sediment physical properties [J]. Sedimentary Geology, 2003, 155(3-4): 361-381. doi: 10.1016/S0037-0738(02)00187-2
    [13]
    Emmel F J, Curray J R. The Bengal Submarine Fan, Northeastern Indian ocean [J]. Geo-Marine Letters, 1983, 3(2-4): 119-124. doi: 10.1007/BF02462456
    [14]
    Galy V, François L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2008, 27(13-14): 1396-1409. doi: 10.1016/j.quascirev.2008.04.005
    [15]
    Babu C P, Pattan J N, Dutta K, et al. Shift in detrital sedimentation in the eastern Bay of Bengal during the late Quaternary [J]. Journal of Earth System Science, 2010, 119(3): 285-295. doi: 10.1007/s12040-010-0022-9
    [16]
    Kessarkar P M, Rao V P, Ahmad S M, et al. Changing sedimentary environment during the Late Quaternary: Sedimentological and isotopic evidence from the distal Bengal Fan [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52(9): 1591-1615. doi: 10.1016/j.dsr.2005.01.009
    [17]
    Tripathy G R, Singh S K, Bhushan R, et al. Sr-Nd isotope composition of the Bay of Bengal sediments: Impact of climate on erosion in the Himalaya [J]. Geochemical Journal, 2011, 45(3): 175-186. doi: 10.2343/geochemj.1.0112
    [18]
    毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4):337-348. [MAO Guangzhou, LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis [J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348. doi: 10.3969/j.issn.1672-6561.2011.04.002
    [19]
    McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [20]
    Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4955-4972. doi: 10.1016/0016-7037(94)90224-0
    [21]
    Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance [J]. Marine Geology, 2014, 357: 12-24. doi: 10.1016/j.margeo.2014.07.002
    [22]
    Um I K, Choi M S, Bahk J J, et al. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea [J]. Marine Geology, 2013, 346: 208-219. doi: 10.1016/j.margeo.2013.09.007
    [23]
    窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2):147-157. [DOU Yanguang, LI Jun, LI Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf [J]. Geochimica, 2012, 41(2): 147-157. doi: 10.3969/j.issn.0379-1726.2012.02.006
    [24]
    Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern South China Sea [J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005
    [25]
    Sun X Q, Liu S F, Li J R, et al. Major and trace element compositions of surface sediments from the lower Bengal Fan: implications for provenance discrimination and sedimentary environment [J]. Journal of Asian Earth Sciences, 2019, 184: 104000. doi: 10.1016/j.jseaes.2019.104000
    [26]
    McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy [J]. Geochimica et Cosmochimica Acta, 1998, 62(21-22): 3453-3473. doi: 10.1016/S0016-7037(98)00248-8
    [27]
    沈华悌. 深海沉积物中的稀土元素[J]. 地球化学, 1990(4):340-348. [SHEN Huati. Rare earth elements in deep-sea sediments [J]. Geochimica, 1990(4): 340-348. doi: 10.3321/j.issn:0379-1726.1990.04.009
    [28]
    Taylor S R, McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
    [29]
    Garzanti E, Wang J G, Vezzoli G, et al. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar) [J]. Chemical Geology, 2016, 440: 73-90. doi: 10.1016/j.chemgeo.2016.06.010
    [30]
    Mazumdar A, Kocherla M, Carvalho M A, et al. Geochemical characterization of the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: A comparative study of provenance [J]. Marine & Petroleum Geology, 2015, 60: 18-33.
    [31]
    Garzanti E, Andó S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh) [J]. Earth and Planetary Science Letters, 2011, 302(1-2): 107-120. doi: 10.1016/j.jpgl.2010.11.043
    [32]
    Evensen N M, Hamilton P J, O'Nions R K. Rare-earth abundances in chondritic meteorites [J]. Geochimica Et Cosmochimica Acta, 1978, 42(8): 1199-1212. doi: 10.1016/0016-7037(78)90114-X
    [33]
    刘娜, 孟宪伟. 冲绳海槽中段表层沉积物中稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2004, 24(4):37-43. [LIU Na, MENG Xianwei. Characteristics of rare earth elements in surface sediments from the middle Okinawa trough: implications for provenance of mixed sediments [J]. Marine Geology & Quaternary Geology, 2004, 24(4): 37-43.
    [34]
    Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A. [J]. Chemical Geology, 1987, 63(3-4): 275-297. doi: 10.1016/0009-2541(87)90167-7
    [35]
    Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments [J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419. doi: 10.1016/S0012-821X(02)00715-X
    [36]
    Condie K C, Dengate J, Culler R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA [J]. Geochimica et Cosmochimica Acta, 1995, 59(2): 279-294. doi: 10.1016/0016-7037(94)00280-Y
    [37]
    Sharma A, Rajamani V. Major element, REE, and other trace element behavior in amphibolite weathering under semiarid conditions in Southern India [J]. Journal of Geology, 2000, 108(4): 487-496. doi: 10.1086/314409
    [38]
    Cullen J L. Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20000 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 315-356. doi: 10.1016/0031-0182(81)90101-2
    [39]
    杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167. [YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Advances in Earth Science, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010
    [40]
    刘升发, 石学法, 王昆山, 等. 全球变化与海气相互作用专项(GASI-IND-CJ03)研究报告[R]. 自然资源部第一海洋研究所, 2019.

    LIU Shengfa, SHI Xuefa, WANG Kunshan, et al. The Research Report of National Survey Project of China (GASI-IND-CJ03)[R]. First Institute of Oceanography, Ministry of Natural Resources, China, 2019.
    [41]
    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4): 309-323. doi: 10.1016/S0031-0182(97)00069-2
    [42]
    Li J R, Liu S F, Feng X L, et al. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance [J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z
    [43]
    Li J R, Liu S F, Shi X F, et al. Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: Implications for sediment provenance and climate control since 40 ka [J]. Quaternary International, 2018, 493: 50-58. doi: 10.1016/j.quaint.2018.06.044
    [44]
    Li J R, Liu S F, Shi X F, et al. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: source and transport pattern [J]. Continental Shelf Research, 2017, 145: 59-67. doi: 10.1016/j.csr.2017.06.017
    [45]
    Hein C J, Galy V, Galy A, et al. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration [J]. Earth and Planetary Science Letters, 2017, 478: 89-101. doi: 10.1016/j.jpgl.2017.08.013
    [46]
    Kuehl S A, Hariu T M, Moore W S. Shelf sedimentation off the Ganges-Brahmaputra river system: evidence for sediment bypassing to the Bengal fan [J]. Geology, 1989, 17(12): 1132-1135. doi: 10.1130/0091-7613(1989)017<1132:SSOTGB>2.3.CO;2
    [47]
    Weber M E, Wiedicke M H, Kudrass H R, et al. Active growth of the Bengal Fan during sea-level rise and highstand [J]. Geology, 1997, 25(4): 315-318. doi: 10.1130/0091-7613(1997)025<0315:AGOTBF>2.3.CO;2
    [48]
    Li J R, Liu S F, Shi X F, et al. Sedimentary responses to the sea level and Indian summer monsoon changes in the central Bay of Bengal since 40 ka [J]. Marine Geology, 2019, 415: 105947. doi: 10.1016/j.margeo.2019.05.006
    [49]
    Weber M E, Lantzsch H, Dekens P, et al. 200, 000 years of monsoonal history recorded on the lower Bengal Fan - strong response to insolation forcing [J]. Global and Planetary Change, 2018, 166: 107-119. doi: 10.1016/j.gloplacha.2018.04.003
    [50]
    方念乔, 陈萍, 吴琳, 等. 孟加拉湾深海记录中的等深流活动特征及其环境意义初探[J]. 地球科学-中国地质大学学报, 2002, 27(5):570-575. [FANG Nianqiao, CHEN Ping, WU Lin, et al. Contour currents in deep-water records from Bay of Bengal and its environmental implication [J]. Earth Science-Journal of China University of Geosciences, 2002, 27(5): 570-575. doi: 10.3321/j.issn:1000-2383.2002.05.016
    [51]
    Zhu L P, Lü X M, Wang J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM [J]. Scientific Reports, 2015, 5(1): 13318. doi: 10.1038/srep13318
    [52]
    Fontugne M R, Duplessy J C. Variations of the monsoon regime during the upper quaternary: Evidence from carbon isotopic record of organic matter in North Indian Ocean sediment cores [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(1-2): 69-88. doi: 10.1016/0031-0182(86)90108-2
    [53]
    Goodbred S L. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade [J]. Sedimentary Geology, 2003, 162(1-2): 83-104. doi: 10.1016/S0037-0738(03)00217-3
    [54]
    Mergulhao L P, Guptha M V S, Unger D, et al. Seasonality and variability of coccolithophore fluxes in response to diverse oceanographic regimes in the Bay of Bengal: Sediment trap results [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 371: 119-135. doi: 10.1016/j.palaeo.2012.12.024
    [55]
    Singh M, Singh I B, Müller G. Sediment characteristics and transportation dynamics of the Ganga River [J]. Geomorphology, 2007, 86(1-2): 144-175. doi: 10.1016/j.geomorph.2006.08.011
    [56]
    Akhil V P, Lengaigne M, Vialard J, et al. A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability [J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8471-8495. doi: 10.1002/2016JC011662
    [57]
    Jana S, Gangopadhyay A, Lermusiaux P F J, et al. Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions [J]. Journal of Marine Systems, 2018, 187: 206-222. doi: 10.1016/j.jmarsys.2018.08.001
    [58]
    Shetye S R, Gouveia A D, Shankar D, et al. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon [J]. Journal of Geophysical Research: Oceans, 1996, 101(C6): 14011-14025. doi: 10.1029/95JC03307
  • Cited by

    Periodical cited type(8)

    1. 孙冰洁,刘升发,SEDDIQUE Ashraf Ali,齐文菁,张辉,曹鹏,吴凯凯,单新,石学法. 恒河水下三角洲表层沉积物稀土元素组成及输运模式. 海洋科学进展. 2025(01): 165-178 .
    2. 于世磊,朱龙海,胡日军,刘营,林超然. 北黄海南部近岸海域表层沉积物稀土元素分布特征及影响因素. 海洋地质前沿. 2024(12): 89-99 .
    3. 王中波,田浩正,武宗荟,王保军,王洋,褚宏宪,温珍河,李杰,张训华. 中国-东盟海区及邻域表层沉积物类型研究现状与展望. 海洋地质与第四纪地质. 2023(03): 49-60 . 本站查看
    4. 王伟力,林彩,刘洋,林辉. 厦门湾海洋生物体中稀土元素含量水平、分布模式及健康风险评价. 海洋开发与管理. 2023(07): 63-69 .
    5. 阎琨,庞国涛,邢新丽,李伟,杨源祯,鲍宽乐. 广西三娘湾准残留沉积——来自端元分析和稀土元素地球化学的证据. 海洋地质前沿. 2023(09): 25-34 .
    6. 谭龙,刘建国,黄云,Md Hafijur Rahaman Khan,徐政,刘升发,石学法. 孟加拉湾中部沉积物地球化学特征及其古海洋学意义. 矿物岩石地球化学通报. 2023(04): 786-795+683 .
    7. 齐文菁,李小艳,范德江,张辉,殷征欣,刘升发. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义. 海洋地质与第四纪地质. 2022(02): 92-100 . 本站查看
    8. 官玉龙,陈亮,姜兆霞,李三忠,肖春凤,陈龙. 东北印度洋源汇过程及古环境与古季风演化. 地学前缘. 2022(05): 102-118 .

    Other cited types(3)

Catalog

    Article views (2355) PDF downloads (89) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return