HUANG Wei, TAO Chunhui, LIAO Shili, LU Jingfang, CUI Ruyong, DING Xue. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126-135. DOI: 10.16562/j.cnki.0256-1492.2019060501
Citation: HUANG Wei, TAO Chunhui, LIAO Shili, LU Jingfang, CUI Ruyong, DING Xue. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126-135. DOI: 10.16562/j.cnki.0256-1492.2019060501

Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge

More Information
  • Received Date: June 04, 2019
  • Revised Date: October 21, 2019
  • Available Online: February 25, 2020
  • The global mid-ocean ridge, where the gold-bearing hydrothermal circulation occurs by tectonic and magmatic processes, is the largest mountain chain on the Earth. It consists predominantly of ultramafic and maficd rocks. A significant amount of gold is initially leached out from the two types of source rocks, and then move by similar physical-chemical processes of transportation and precipitation, and finally incorporate into the massive sulfide deposits. After formation, the sulfide deposits will suffer from extensive dissolution, remobilization and reprecipitation. It is observed that the gold ratios between the sulfide deposits and the source rocks in the ultramafic-hosted hydrothermal systems are much greater than those in the mafic-hosted hydrothermal systems. Such differences in the two types of hydrothermal systems suggest that they have significant distinctions in the occurrence, evolution and enrichment of gold in the hydrothermal circulation on the mid-ocean ridge. Four factors in favor of such distinctions in the ultramafic-hosted hydrothermal systems have been identified: 1) the nature of the surrounding rocks; 2) abiotic organic compounds and gaseous species in the vent fluids; 3) permeability of the hydrothermal fluids upflowing zones; 4) incidence of the volcanic event. For the gold deposits on the mid-ocean ridge, in-situ and micro-area analyses of high-precision for the composition, species and properties in different components of the hydrothermal systems together with the experimental and thermodynamic modelling are critical to revealing quantitatively the extent of the source contributions and enrichment or depletion of gold in different evolutionary stages of gold, and provide significant insight into the enrichment process of gold on the mid-ocean ridge under the intervention of mankind.
  • [1]
    Huston D L, Pehrsson S, Eglington B M, et al. The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting [J]. Economic Geology, 2010, 105(3): 571-591. doi: 10.2113/gsecongeo.105.3.571
    [2]
    Hannington M D. Volcanogenic massive sulfide deposits [J]. Treatise on Geochemistry, 2014, 13: 463-488.
    [3]
    Mercier-Langevin P, Hannington M D, Dubé B, et al. The gold content of volcanogenic massive sulfide deposits [J]. Mineralium Deposita, 2011, 46(5-6): 509-539. doi: 10.1007/s00126-010-0300-0
    [4]
    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1
    [5]
    German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? [J]. Chemical Geology, 2016, 420: 114-126. doi: 10.1016/j.chemgeo.2015.11.006
    [6]
    Patten C G C, Pitcairn I K, Teagle D A H. Hydrothermal mobilisation of Au and other metals in supra-subduction oceanic crust: insights from the Troodos ophiolite [J]. Ore Geology Reviews, 2017, 86: 487-508. doi: 10.1016/j.oregeorev.2017.02.019
    [7]
    Patten C G C, Pitcairn I K, Teagle D A H, et al. Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits [J]. Mineralium Deposita, 2016, 51(2): 179-200. doi: 10.1007/s00126-015-0598-8
    [8]
    German C R, Seyfried Jr W E. Hydrothermal processes [J]. Treatise on Geochemistry, 2014, 8: 191-233.
    [9]
    Fischer-Gödde M, Becker H, Wombacher F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths [J]. Chemical Geology, 2011, 280(3-4): 365-383. doi: 10.1016/j.chemgeo.2010.11.024
    [10]
    Palme H, O'Neill H S C. Cosmochemical estimates of mantle composition [J]. Treatise on Geochemistry, 2014, 3: 1-39.
    [11]
    陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004: 418.

    CHEN Jun, WANG Henian. Geochemistry[M]. Beijing: Science Press, 2004: 418.
    [12]
    Mungall J E, Brenan J M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements [J]. Geochimica et Cosmochimica Acta, 2014, 125: 265-289. doi: 10.1016/j.gca.2013.10.002
    [13]
    Saunders J E, Pearson N J, O’Reilly S Y, et al. Gold in the mantle: the role of pyroxenites [J]. Lithos, 2016, 244: 205-217. doi: 10.1016/j.lithos.2015.12.008
    [14]
    Crocket J H. Platinum-group element geochemistry of mafic and ultramafic rocks[M]//Cabri L J. Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements. Montréal: Canadian Institute of Mining, Metallurgy and Petroleum, 2002: 177-210.
    [15]
    Arevalo Jr R, McDonough W F. Chemical variations and regional diversity observed in MORB [J]. Chemical Geology, 2010, 271(1-2): 70-85. doi: 10.1016/j.chemgeo.2009.12.013
    [16]
    Webber A P, Roberts S, Taylor R N, et al. Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction [J]. Geology, 2013, 41(1): 87-90. doi: 10.1130/G33301.1
    [17]
    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
    [18]
    Pitcairn I K. Background concentrations of gold in different rock types [J]. Applied Earth Science, 2011, 120(1): 31-38. doi: 10.1179/1743275811Y.0000000021
    [19]
    Peach C L, Mathez E A, Keays R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting [J]. Geochimica et Cosmochimica Acta, 1990, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S
    [20]
    Fleet M E, Crocket J H, Stone W E. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt [J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2397-2412. doi: 10.1016/0016-7037(96)00100-7
    [21]
    Crocket J H, Fleet M E, Stone W E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4139-4149. doi: 10.1016/S0016-7037(97)00234-2
    [22]
    Mungall J E, Brenan J M, Godel B, et al. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles [J]. Nature Geoscience, 2015, 8(3): 216-219. doi: 10.1038/ngeo2373
    [23]
    黄威, 陶春辉, 孙治雷, 等. 金在现代海底热液系统中的分布及演化[J]. 地质论评, 2017, 63(3):758-769. [HUANG Wei, TAO Chunhui, SUN Zhilei, et al. The occurrence and evolution of gold in modern seafloor hydrothermal systems [J]. Geological Review, 2017, 63(3): 758-769.
    [24]
    Alt J C, Laverne C, Coggon R M, et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256 [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(10): Q10010.
    [25]
    Jowitt S M, Jenkin G R T, Coogan L A, et al. Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: effects of protolith composition and alteration mineralogy [J]. Journal of Geochemical Exploration, 2012, 118: 47-59. doi: 10.1016/j.gexplo.2012.04.005
    [26]
    Kenison Falkner K, Edmond J M. Gold in seawater [J]. Earth and Planetary Science Letters, 1990, 98(2): 208-221. doi: 10.1016/0012-821X(90)90060-B
    [27]
    Mottl M J, Seewald J S, Wheat C G, et al. Chemistry of hot springs along the Eastern Lau Spreading Center [J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1013-1038. doi: 10.1016/j.gca.2010.12.008
    [28]
    曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
    [29]
    James R H, Green D R H, Stock M J, et al. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre [J]. Geochimica et Cosmochimica Acta, 2014, 139: 47-71. doi: 10.1016/j.gca.2014.04.024
    [30]
    Mottl M J. Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature[M]//Halbach P E, Tunnicliffe V, Hein J R. Energy and Mass Transfer in Marine Hydrothermal Systems. Berlin: Dahlem University Press, 2003: 271-286.
    [31]
    Pokrovski G S, Akinfiev N N, Borisova A Y, et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling [J]. Geological Society, London, Special Publications, 2014, 402(1): 9-70. doi: 10.1144/SP402.4
    [32]
    Pearson R G. Hard and soft acids and bases [J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539. doi: 10.1021/ja00905a001
    [33]
    Akinfiev N N, Zotov A V. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0-600℃ and pressures of 1-3000 bar [J]. Geochemistry International, 2010, 48(7): 714-720. doi: 10.1134/S0016702910070074
    [34]
    Liu W H, Etschmann B, Testemale D, et al. Gold transport in hydrothermal fluids: Competition among the Cl?, Br?, HS? and NH3(aq) ligands [J]. Chemical Geology, 2014, 376: 11-19. doi: 10.1016/j.chemgeo.2014.03.012
    [35]
    Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littelton, Colorado, USA: Society of Economic Geologists, 2005: 111-141.
    [36]
    Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006
    [37]
    Von Damm K L, Bray A M, Buttermore L G, et al. The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge [J]. Earth and Planetary Science Letters, 1998, 160(3-4): 521-536. doi: 10.1016/S0012-821X(98)00108-3
    [38]
    Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR) [J]. Chemical Geology, 2002, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1
    [39]
    German C R, Lin J. The thermal structure of the oceanic crust, ridge‐spreading and hydrothermal circulation: how well do we understand their inter‐connections?[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 2004: 148, 1-18.
    [40]
    Fouquet Y, Cambon P, Etoubleau J, et al. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 2010: 321-367.
    [41]
    Schmidt K, Garbe-Schönberg D, Koschinsky A, et al. Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): constraints on fluid–rock interaction in heterogeneous lithosphere [J]. Chemical Geology, 2011, 280(1-2): 1-18. doi: 10.1016/j.chemgeo.2010.07.008
    [42]
    Seyfried Jr W E, Pester N J, Ding K, et al. Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes [J]. Geochimica et Cosmochimica Acta, 2011, 75(6): 1574-1593. doi: 10.1016/j.gca.2011.01.001
    [43]
    Baumberger T, Früh-Green G L, Thorseth I H, et al. Fluid composition of the sediment-influenced Loki’s Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge [J]. Geochimica et Cosmochimica Acta, 2016, 187: 156-178. doi: 10.1016/j.gca.2016.05.017
    [44]
    Ji F W, Zhou H Y, Yang Q H, et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 122: 41-47. doi: 10.1016/j.dsr.2017.02.001
    [45]
    Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids [J]. Chemical Geology, 2002, 184(1-2): 37-48. doi: 10.1016/S0009-2541(01)00351-5
    [46]
    Schmidt K, Koschinsky A, Garbe-Schonberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation [J]. Chemical Geology, 2007, 242(1-2): 1-21. doi: 10.1016/j.chemgeo.2007.01.023
    [47]
    Knight R D, Roberts S, Webber A P. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges [J]. Mineralium Deposita, 2018, 53(1): 143-152. doi: 10.1007/s00126-017-0762-4
    [48]
    Simon A C, Frank M R, Pettke T, et al. Gold partitioning in melt-vapor-brine systems [J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3321-3335. doi: 10.1016/j.gca.2005.01.028
    [49]
    Pokrovski G S, Borisova A Y, Harrichoury J C. The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 345-362. doi: 10.1016/j.jpgl.2007.11.023
    [50]
    Frank M R, Simon A C, Pettke T, et al. Gold and copper partitioning in magmatic-hydrothermal systems at 800 ℃ and 100 MPa [J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2470-2482. doi: 10.1016/j.gca.2011.02.012
    [51]
    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules [J]. Treatise on Geochemistry, 2014, 13: 273-291.
    [52]
    Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 355(1723): 427-441. doi: 10.1098/rsta.1997.0015
    [53]
    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012
    [54]
    Hannington M, Jamieson J, Monecke T, et al. Modern sea-floor massive sulfides and base metal resources: Toward an estimate of global sea-floor massive sulfide potential[M]//Goldfarb R J, Marsh E E, Monecke T. The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Littleton, Colorado: Society of Economic Geologists, 2010: 317-338.
    [55]
    Wagner T, Klemd R, Wenzel T, et al. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation–inductively coupled plasma–mass spectrometry analysis of invisible gold [J]. Geology, 2007, 35(9): 775-778. doi: 10.1130/G23739A.1
    [56]
    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study [J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41. doi: 10.1016/j.gca.2015.03.020
    [57]
    王琰, 孙晓明, 吴仲玮, 等. 西南印度洋超慢速扩张脊海底热液硫化物中金银矿物的富集特征及富集机制研究[J]. 光谱学与光谱分析, 2014, 34(12):3327-3332. [WANG Yan, SUN Xiaoming, WU Zhongwei, et al. The enrichment characteristic and mechanism of gold-silver minerals in submarine hydrothermal sulfides from the ultra-slow-spreading SWIR [J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3327-3332. doi: 10.3964/j.issn.1000-0593(2014)12-3327-06
    [58]
    吴仲玮, 孙晓明, 戴瑛知, 等. 中印度洋海岭Edmond热液区块状硫化物中自然金的发现及其意义[J]. 岩石学报, 2012, 27(12):3749-3762. [WU Zhongwei, SUN Xiaoming, DAI Yingzhi, et al. The discovery of native gold in massive sulfides from the Edmond hydrothermal field, Central Indian Ridge and its significance [J]. Acta Petrologica Sinica, 2012, 27(12): 3749-3762.
    [59]
    Wu Z W, Sun X M, Xu H F, et al. Occurrences and distribution of “invisible” precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge [J]. Ore Geology Reviews, 2016, 79: 105-132. doi: 10.1016/j.oregeorev.2016.05.006
    [60]
    Doyle M G, Allen R L. Subsea-floor replacement in volcanic-hosted massive sulfide deposits [J]. Ore Geology Reviews, 2003, 23(3-4): 183-222. doi: 10.1016/S0169-1368(03)00035-0
    [61]
    Fallon E K, Petersen S, Brooker R A, et al. Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining [J]. Ore Geology Reviews, 2017, 86: 309-337. doi: 10.1016/j.oregeorev.2017.02.028
    [62]
    Wu Y F, Evans K, Li J W, et al. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit [J]. Geochimica et Cosmochimica Acta, 2019, 245: 98-117. doi: 10.1016/j.gca.2018.10.031
    [63]
    Fougerouse D, Micklethwaite S, Tomkins A G, et al. Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite [J]. Geochimica et Cosmochimica Acta, 2016, 178: 143-159. doi: 10.1016/j.gca.2016.01.040
    [64]
    Melekestseva I Y, Maslennikov V V, Tret’yakov G A, et al. Gold-and silver-rich massive sulfides from the semenov-2 hydrothermal field, 13°31.13′N, Mid-Atlantic Ridge: a case of magmatic contribution? [J]. Economic Geology, 2017, 112(4): 741-773. doi: 10.2113/econgeo.112.4.741
    [65]
    Webber A P, Roberts S, Murton B J, et al. The formation of gold-rich seafloor sulfide deposits: evidence from the Beebe hydrothermal vent field, Cayman Trough [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2011-2027. doi: 10.1002/2017GC006922
    [66]
    Webber A P, Roberts S, Murton B J, et al. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2661-2678. doi: 10.1002/2015GC005879

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return