Citation: | LUO Qing, ZHANG Guoliang. Alteration of oceanic crust at the Tonga-Kermadec subduction front and its controlling factors[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 56-70. DOI: 10.16562/j.cnki.0256-1492.2018.04.005 |
[1] |
Zhang G L, Smith D, Christopher.Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific[J].Geochemistry, Geophysics, Geosystems, 2014, 15 (7) :3066-3080. doi: 10.1002/2013GC005141
|
[2] |
Révillon S, Teagle D A H, Boulvais P, et al.Geochemical fluxes related to alteration of a subaerially exposed seamount:Nintoku seamount, ODP Leg 197, Site 1205[J].Geochemistry Geophysics Geosystems, 2007, 8 (2) :Q02014. doi: 10.1029/2006GC001400
|
[3] |
Spivack A J, Staudigel H.Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater[J].Chemical Geology, 1994, 115 (3) :239-247. https://www.sciencedirect.com/science/article/abs/pii/0009254194901899
|
[4] |
Shibuya T, Tahata M, Kitajima K, et al.Depth variation of carbon and oxygen isotopes of calcites in Archean altered upperoceanic crust:Implications for the CO2 flux from ocean to oceanic crust in the Archean[J].Earth and Planetary Science Letters, 2012, 321-322 (1) :64-73.
|
[5] |
Schramm B, Devey C W, Gillis K M, et al.Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Rise basalts from 0to 9Ma[J].Chemical Geology, 2005, 218 (3-4) :281-313. doi: 10.1016/j.chemgeo.2005.01.011
|
[6] |
Hunter A G, Kempton P D, Greenwood P.Low-temperature fluid-rock interaction—an isotopic and mineralogical perspective of upper crustal evolution, eastern flank of the Juan de Fuca Ridge (JdFR), ODP Leg 168[J].Chemical Geology, 1999, 155 (1-2) :3-28. doi: 10.1016/S0009-2541(98)00138-7
|
[7] |
Staudigel H, Plank T, White B, et al.Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust:DSDP Sites 417and 418[J].Subduction Top to Bottom, 1996:19-38. doi: 10.1029/GM096p0019
|
[8] |
Stern R J.Subduction zones[J].Reviews of Geophysics, 2002, 40 (4) :3-1-3-38. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232216228/
|
[9] |
Hellevang H, Haile B G, Tetteh A.Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt[J].Greenhouse Gases:Science and Technology, 2017, 7 (1) :143-157. doi: 10.1002/ghg.1619
|
[10] |
Browne P R L.Hydrothermal alteration in active geothermal fields[J].Annual Review of Earth and Planetary Sciences, 1978, 6:229-250. doi: 10.1146/annurev.ea.06.050178.001305
|
[11] |
Staudigel H, Hart S R, Richardson S H.Alteration of the oceanic crust:Processes and timing[J].Earth and Planetary Science Letters, 1981, 52 (2) :311-327. doi: 10.1016/0012-821X(81)90186-2
|
[12] |
Petersen N, Eisenach P, Bleil U.Low temperature alteration of the magnetic minerals in ocean floor basalts[J].Deep Drilling Results in the Atlantic Ocean:Ocean Crust, 1979, 2:169-209. doi: 10.1029/ME002p0169
|
[13] |
Andrews A.Low temperature fluid alteration of oceanic layer2 basalts, DSDP Leg 37[J].Canadian Journal of Earth Sciences, 1977, 14 (4) :911-926. doi: 10.1139/e77-086
|
[14] |
Giorgetti G, Marescotti P, Cabella R, et al.Clay mineral mixtures as alteration products in pillow basalts from the eastern flank of Juan de Fuca Ridge:a TEM-AEM study[J].Clay Minerals, 2001, 36 (1) :75-91. doi: 10.1180/000985501547367
|
[15] |
Pichler T, Ridley W I, Nelson E.Low-temperature alteration of dredged volcanics from the Southern Chile Ridge:additional information about early stages of seafloor weathering[J].Marine Geology, 1999, 159 (1-4) :155-177. doi: 10.1016/S0025-3227(99)00008-0
|
[16] |
Billen M I, Stock J.Morphology and origin of the Osbourn Trough[J].Journal of Geophysical Research-Solid Earth, 2000, 105 (B6) :13481-13489. doi: 10.1029/2000JB900035
|
[17] |
Downey N J, Stock J M, Clayton R W, et al.History of the Cretaceous Osbourn spreading center[J].Journal of Geophysical Research:Solid Earth, 2007, 112 (B4) :1-10. doi: 10.1029/2006JB004550
|
[18] |
Taylor B.The single largest oceanic plateau:Ontong JavaManihiki-Hikurangi[J].Earth and Planetary Science Letters, 2006, 241 (3) :372-380. https://www.sciencedirect.com/science/article/pii/S0016703711006533
|
[19] |
Hoernle K, Hauff F, van den Bogaard P, et al.Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus[J].Geochimica et Cosmochimica Acta, 2010, 74 (24) :7196-7219. doi: 10.1016/j.gca.2010.09.030
|
[20] |
Timm C, Hoernle K, Werner R, et al.Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific:New evidence for a plume origin[J].Earth and Planetary Science Letters, 2011, 304 (1-2) :135-146. doi: 10.1016/j.epsl.2011.01.025
|
[21] |
Watts A B, Weissel J K, Duncan R A, et al.Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone System[J].Journal of Geophysical Research:Solid Earth, 1988, 93 (B4) :3051-3077. doi: 10.1029/JB093iB04p03051
|
[22] |
Koppers A A P, Duncan R A, Steinberger B.Implications of a nonlinear 40 Ar/39 Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots[J].Geochemistry, Geophysics, Geosystems, 2004, 5 (6), doi: 10.1029/2003GC000671.
|
[23] |
Lonsdale P.A multibeam reconnaissance of the Tonga Trench axis and its intersection with the Louisville guyot chain[J].Marine Geophysical Researches, 1986, 8 (4) :295-327. doi: 10.1007/BF02084016
|
[24] |
Timm C, Bassett D, Graham Ⅰ J, et al.Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc[J].Nature Communications, 2013, 4 (4) :1720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f26041dc3d56b28e954a807f4fcf1c4
|
[25] |
Divins D L.Total Sediment Thickness of the World's Oceans and Marginal Seas[R].Boulder, CO: NOAA National Geophysical Data Center, 2003.
|
[26] |
Zhang G-L, Li C.Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough[J].Scientific Reports, 2016, 6:37561. doi: 10.1038/srep37561
|
[27] |
D'Hondt S, Inagaki F, Alvarez Zarikian C A, et al.Site U1365[J].Proceedings of the Integrated Ocean Drilling Program, 2011, 329. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226717074/
|
[28] |
Turner S, Handler M, Bindeman I, et al.New insights into the origin of O-Hf-Os isotope signatures in arc lavas from Tonga-Kermadec[J].Chemical Geology, 2009, 266 (3) :187-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=995135d57ff11673367d4383d1724cf1
|
[29] |
Castillo P, Lonsdale P, Moran C, et al.Geochemistry of midCretaceous Pacific crust being subducted along the TongaKermadec Trench:Implications for the generation of arc lavas[J].Lithos, 2009, 112 (1) :87-102. https://www.sciencedirect.com/science/article/pii/S0024493709001194
|
[30] |
Bloomer S H, Ewart A, Hergt J M, et al.Geochemistry and origin of igneous rocks from the outer Tonga forearc (Site841) [J].Proceedings of the Ocean Drilling Program.Scientific results, 1994, 135:625-646.
|
[31] |
Blanc G, Vitali F, Stille P.Unusual diagenetic alteration of volcanoclastic sediments in the Tonga fore-are:Evidence from chemical and strontium isotopic compositions of interstitial waters[J].Geochimica et Cosmochimica Acta, 1995, 59 (22) :4633-4644. doi: 10.1016/0016-7037(95)00317-7
|
[32] |
Hajash A, Archer P.Experimental seawater/basalt interactions:Effects of cooling[J].Contributions to Mineralogy and Petrology, 1980, 75 (1) :1-13. doi: 10.1007/BF00371884
|
[33] |
Andrews A J.Saponite and celadonite in layer 2basalts, DSDP Leg 37[J].Contributions to Mineralogy and Petrology, 1980, 73 (4) :323-340. doi: 10.1007/BF00376627
|
[34] |
Walton A W, Schiffman P, Macpherson G.Alteration of hyaloclastites in the HSDP 2Phase 1Drill Core:2.Mass balance of the conversion of sideromelane to palagonite and chabazite[J].Geochemistry, Geophysics, Geosystems, 2005, 6 (9) :Q09G19.
|
[35] |
邓海琳, 涂光炽, 李朝阳, 等.水/岩比的地球化学意义[J].矿物学报, 1999 (3) :267-272. doi: 10.3321/j.issn:1000-4734.1999.03.003
DENG Hailin, TU Guangzhi, LI Chaoyang, et al.Geochemical significance of water/rock ratios[J].Acta Mineralogica Sinica, 1999 (3) :267-272. doi: 10.3321/j.issn:1000-4734.1999.03.003
|
[36] |
Summerhayes C P, Thorpe S A.Oceanography:an illustrated guide[M].CRC Press, 1996:165-181.
|
[37] |
Alt J, Honnorez J.Alteration of the upper oceanic crust, DSDP site 417:mineralogy and chemistry[J].Contributions to Mineralogy and Petrology, 1984, 87 (2) :149-169. doi: 10.1007/BF00376221
|
[38] |
Clayton T, Pearce R B.Alteration mineralogy of Cretaceous basalt from ODP Site 1001, Leg 165 (Caribbean Sea) [J].Clay Minerals, 2000, 35 (4) :719-733.
|
[39] |
Rouxel O, Dobbek N, Ludden J, et al.Iron isotope fractionation during oceanic crust alteration[J].Chemical Geology, 2003, 202 (1) :155-182. doi: 10.1180/000985500547043
|
[40] |
Zhou Z, Fyfe W.Palagonitization of basaltic glass from DSDP Site 335, Leg 37:Textures, chemical composition, and mechanism of formation[J].American Mineralogist, 1989, 74 (9) :1045-1053. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027034701/
|
[41] |
Staudigel H and Hart S R.Alteration of basaltic glass:Mechanisms and significance for the oceanic crust-seawater budget[J].Geochimica et Cosmochimica Acta, 1983, 47 (3) :337-350. doi: 10.1016/0016-7037(83)90257-0
|
[42] |
Staudigel H, Muehlenbachs K, Richardson S H, et al.Agents of low temperature ocean crust alteration[J].Contributions to Mineralogy and Petrology, 1981, 77 (2) :150-157.
|