LUO Qing, ZHANG Guoliang. Alteration of oceanic crust at the Tonga-Kermadec subduction front and its controlling factors[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 56-70. DOI: 10.16562/j.cnki.0256-1492.2018.04.005
Citation: LUO Qing, ZHANG Guoliang. Alteration of oceanic crust at the Tonga-Kermadec subduction front and its controlling factors[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 56-70. DOI: 10.16562/j.cnki.0256-1492.2018.04.005

Alteration of oceanic crust at the Tonga-Kermadec subduction front and its controlling factors

More Information
  • Received Date: July 24, 2017
  • Revised Date: October 17, 2017
  • Altered oceanic crust is the significant source of the materials subducting into the mantle and cause of volcanisms.The variations in mineral and geochemical compositions that caused by the alterations are crucial for understanding the chemical cycles of the solid earth.IODP Site U1365, located in the subduction slab in front of the Tonga-Kermadec subduction zone, is selected as an ideal place for study of the basalts to reveal the subduction process of the Tonga-Kermadec zone.We analyzed the major elements of alterated products of 9 basalts with electronic probe.Combined with bulk rock geochemical data, we investigated the influencing factors of low temperature alteration, and discussed the control of alteration products on bulk rock geochemical variations.The major products of alteration are recognized as saponite, celadonite, beidellite, zeolite, chlorite, palagonite, phyrite, calcite, and Fe-oxide/hydroxide, which represent a typical type of low-temperature alteration.From the lava boundary and/or vein edge to the center of the rock, aprogressive sequence of dominant secondary mineral assemblage has been identified, which changes from Fe-oxide/hydroxide to celadonite, to saponite+phyrite, indicating a transition from oxidizing condition to reducing condition.The types of alteration include mineral replacement, vent filling, and vein filling.Based on the mineral compositions and intercalating relationships, the alteration processes could be divided into four stages, characterized respectively by palagonitization of basaltic glass, formation of oxidizing minerals (celadonite and Fe-oxide/hydroxide), formation of reducing minerals (saponite and phyrite), and the closing of fractures by calcite veins.The chemical changes of oceanic basalts during the alteration are mainly marked by rising in K2O and Fe2O3, and losing of FeO, CaO and Na2O.The alteration becomes intensified when it closes to the lava boundary, as the minimum water-rock ratio rising up.As the result, it will lead to stronger chemical variations.Electronic Microprobe data analyses show that, K2O is mainly reserved in celadonite and zeonite; Fe2O3in Fe-oxide/hydroxide, palagonite, and celadonite; and CaO in calcite vains but significantly low in other alteration products.This result can explain the chemical variations of the basalts of Site U1365, for instance, the samples, which suffered stronger sea water oxidation, may have more oxydic alteration products (such as Fe-oxide/hydroxide, palagonite, and celadonite) enriched in K2O and Fe2O3, indicating the control of alteration types on oceanic basalt compositions.
  • [1]
    Zhang G L, Smith D, Christopher.Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific[J].Geochemistry, Geophysics, Geosystems, 2014, 15 (7) :3066-3080. doi: 10.1002/2013GC005141
    [2]
    Révillon S, Teagle D A H, Boulvais P, et al.Geochemical fluxes related to alteration of a subaerially exposed seamount:Nintoku seamount, ODP Leg 197, Site 1205[J].Geochemistry Geophysics Geosystems, 2007, 8 (2) :Q02014. doi: 10.1029/2006GC001400
    [3]
    Spivack A J, Staudigel H.Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater[J].Chemical Geology, 1994, 115 (3) :239-247. https://www.sciencedirect.com/science/article/abs/pii/0009254194901899
    [4]
    Shibuya T, Tahata M, Kitajima K, et al.Depth variation of carbon and oxygen isotopes of calcites in Archean altered upperoceanic crust:Implications for the CO2 flux from ocean to oceanic crust in the Archean[J].Earth and Planetary Science Letters, 2012, 321-322 (1) :64-73.
    [5]
    Schramm B, Devey C W, Gillis K M, et al.Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Rise basalts from 0to 9Ma[J].Chemical Geology, 2005, 218 (3-4) :281-313. doi: 10.1016/j.chemgeo.2005.01.011
    [6]
    Hunter A G, Kempton P D, Greenwood P.Low-temperature fluid-rock interaction—an isotopic and mineralogical perspective of upper crustal evolution, eastern flank of the Juan de Fuca Ridge (JdFR), ODP Leg 168[J].Chemical Geology, 1999, 155 (1-2) :3-28. doi: 10.1016/S0009-2541(98)00138-7
    [7]
    Staudigel H, Plank T, White B, et al.Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust:DSDP Sites 417and 418[J].Subduction Top to Bottom, 1996:19-38. doi: 10.1029/GM096p0019
    [8]
    Stern R J.Subduction zones[J].Reviews of Geophysics, 2002, 40 (4) :3-1-3-38. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232216228/
    [9]
    Hellevang H, Haile B G, Tetteh A.Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt[J].Greenhouse Gases:Science and Technology, 2017, 7 (1) :143-157. doi: 10.1002/ghg.1619
    [10]
    Browne P R L.Hydrothermal alteration in active geothermal fields[J].Annual Review of Earth and Planetary Sciences, 1978, 6:229-250. doi: 10.1146/annurev.ea.06.050178.001305
    [11]
    Staudigel H, Hart S R, Richardson S H.Alteration of the oceanic crust:Processes and timing[J].Earth and Planetary Science Letters, 1981, 52 (2) :311-327. doi: 10.1016/0012-821X(81)90186-2
    [12]
    Petersen N, Eisenach P, Bleil U.Low temperature alteration of the magnetic minerals in ocean floor basalts[J].Deep Drilling Results in the Atlantic Ocean:Ocean Crust, 1979, 2:169-209. doi: 10.1029/ME002p0169
    [13]
    Andrews A.Low temperature fluid alteration of oceanic layer2 basalts, DSDP Leg 37[J].Canadian Journal of Earth Sciences, 1977, 14 (4) :911-926. doi: 10.1139/e77-086
    [14]
    Giorgetti G, Marescotti P, Cabella R, et al.Clay mineral mixtures as alteration products in pillow basalts from the eastern flank of Juan de Fuca Ridge:a TEM-AEM study[J].Clay Minerals, 2001, 36 (1) :75-91. doi: 10.1180/000985501547367
    [15]
    Pichler T, Ridley W I, Nelson E.Low-temperature alteration of dredged volcanics from the Southern Chile Ridge:additional information about early stages of seafloor weathering[J].Marine Geology, 1999, 159 (1-4) :155-177. doi: 10.1016/S0025-3227(99)00008-0
    [16]
    Billen M I, Stock J.Morphology and origin of the Osbourn Trough[J].Journal of Geophysical Research-Solid Earth, 2000, 105 (B6) :13481-13489. doi: 10.1029/2000JB900035
    [17]
    Downey N J, Stock J M, Clayton R W, et al.History of the Cretaceous Osbourn spreading center[J].Journal of Geophysical Research:Solid Earth, 2007, 112 (B4) :1-10. doi: 10.1029/2006JB004550
    [18]
    Taylor B.The single largest oceanic plateau:Ontong JavaManihiki-Hikurangi[J].Earth and Planetary Science Letters, 2006, 241 (3) :372-380. https://www.sciencedirect.com/science/article/pii/S0016703711006533
    [19]
    Hoernle K, Hauff F, van den Bogaard P, et al.Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus[J].Geochimica et Cosmochimica Acta, 2010, 74 (24) :7196-7219. doi: 10.1016/j.gca.2010.09.030
    [20]
    Timm C, Hoernle K, Werner R, et al.Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific:New evidence for a plume origin[J].Earth and Planetary Science Letters, 2011, 304 (1-2) :135-146. doi: 10.1016/j.epsl.2011.01.025
    [21]
    Watts A B, Weissel J K, Duncan R A, et al.Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone System[J].Journal of Geophysical Research:Solid Earth, 1988, 93 (B4) :3051-3077. doi: 10.1029/JB093iB04p03051
    [22]
    Koppers A A P, Duncan R A, Steinberger B.Implications of a nonlinear 40 Ar/39 Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots[J].Geochemistry, Geophysics, Geosystems, 2004, 5 (6), doi: 10.1029/2003GC000671.
    [23]
    Lonsdale P.A multibeam reconnaissance of the Tonga Trench axis and its intersection with the Louisville guyot chain[J].Marine Geophysical Researches, 1986, 8 (4) :295-327. doi: 10.1007/BF02084016
    [24]
    Timm C, Bassett D, Graham Ⅰ J, et al.Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc[J].Nature Communications, 2013, 4 (4) :1720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f26041dc3d56b28e954a807f4fcf1c4
    [25]
    Divins D L.Total Sediment Thickness of the World's Oceans and Marginal Seas[R].Boulder, CO: NOAA National Geophysical Data Center, 2003.
    [26]
    Zhang G-L, Li C.Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough[J].Scientific Reports, 2016, 6:37561. doi: 10.1038/srep37561
    [27]
    D'Hondt S, Inagaki F, Alvarez Zarikian C A, et al.Site U1365[J].Proceedings of the Integrated Ocean Drilling Program, 2011, 329. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226717074/
    [28]
    Turner S, Handler M, Bindeman I, et al.New insights into the origin of O-Hf-Os isotope signatures in arc lavas from Tonga-Kermadec[J].Chemical Geology, 2009, 266 (3) :187-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=995135d57ff11673367d4383d1724cf1
    [29]
    Castillo P, Lonsdale P, Moran C, et al.Geochemistry of midCretaceous Pacific crust being subducted along the TongaKermadec Trench:Implications for the generation of arc lavas[J].Lithos, 2009, 112 (1) :87-102. https://www.sciencedirect.com/science/article/pii/S0024493709001194
    [30]
    Bloomer S H, Ewart A, Hergt J M, et al.Geochemistry and origin of igneous rocks from the outer Tonga forearc (Site841) [J].Proceedings of the Ocean Drilling Program.Scientific results, 1994, 135:625-646.
    [31]
    Blanc G, Vitali F, Stille P.Unusual diagenetic alteration of volcanoclastic sediments in the Tonga fore-are:Evidence from chemical and strontium isotopic compositions of interstitial waters[J].Geochimica et Cosmochimica Acta, 1995, 59 (22) :4633-4644. doi: 10.1016/0016-7037(95)00317-7
    [32]
    Hajash A, Archer P.Experimental seawater/basalt interactions:Effects of cooling[J].Contributions to Mineralogy and Petrology, 1980, 75 (1) :1-13. doi: 10.1007/BF00371884
    [33]
    Andrews A J.Saponite and celadonite in layer 2basalts, DSDP Leg 37[J].Contributions to Mineralogy and Petrology, 1980, 73 (4) :323-340. doi: 10.1007/BF00376627
    [34]
    Walton A W, Schiffman P, Macpherson G.Alteration of hyaloclastites in the HSDP 2Phase 1Drill Core:2.Mass balance of the conversion of sideromelane to palagonite and chabazite[J].Geochemistry, Geophysics, Geosystems, 2005, 6 (9) :Q09G19.
    [35]
    邓海琳, 涂光炽, 李朝阳, 等.水/岩比的地球化学意义[J].矿物学报, 1999 (3) :267-272. doi: 10.3321/j.issn:1000-4734.1999.03.003

    DENG Hailin, TU Guangzhi, LI Chaoyang, et al.Geochemical significance of water/rock ratios[J].Acta Mineralogica Sinica, 1999 (3) :267-272. doi: 10.3321/j.issn:1000-4734.1999.03.003
    [36]
    Summerhayes C P, Thorpe S A.Oceanography:an illustrated guide[M].CRC Press, 1996:165-181.
    [37]
    Alt J, Honnorez J.Alteration of the upper oceanic crust, DSDP site 417:mineralogy and chemistry[J].Contributions to Mineralogy and Petrology, 1984, 87 (2) :149-169. doi: 10.1007/BF00376221
    [38]
    Clayton T, Pearce R B.Alteration mineralogy of Cretaceous basalt from ODP Site 1001, Leg 165 (Caribbean Sea) [J].Clay Minerals, 2000, 35 (4) :719-733.
    [39]
    Rouxel O, Dobbek N, Ludden J, et al.Iron isotope fractionation during oceanic crust alteration[J].Chemical Geology, 2003, 202 (1) :155-182. doi: 10.1180/000985500547043
    [40]
    Zhou Z, Fyfe W.Palagonitization of basaltic glass from DSDP Site 335, Leg 37:Textures, chemical composition, and mechanism of formation[J].American Mineralogist, 1989, 74 (9) :1045-1053. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027034701/
    [41]
    Staudigel H and Hart S R.Alteration of basaltic glass:Mechanisms and significance for the oceanic crust-seawater budget[J].Geochimica et Cosmochimica Acta, 1983, 47 (3) :337-350. doi: 10.1016/0016-7037(83)90257-0
    [42]
    Staudigel H, Muehlenbachs K, Richardson S H, et al.Agents of low temperature ocean crust alteration[J].Contributions to Mineralogy and Petrology, 1981, 77 (2) :150-157.

Catalog

    Article views (2544) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return