LU Jian, LI Shaoke, LI Anchun, LIU Xiting, DONG Jiang, ZHANG Jin. Application of X-ray computed tomography to porosity analysis of the along-shelf clinoform deposit in the East China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 198-207. DOI: 10.16562/j.cnki.0256-1492.2018.02.020
Citation: LU Jian, LI Shaoke, LI Anchun, LIU Xiting, DONG Jiang, ZHANG Jin. Application of X-ray computed tomography to porosity analysis of the along-shelf clinoform deposit in the East China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 198-207. DOI: 10.16562/j.cnki.0256-1492.2018.02.020

Application of X-ray computed tomography to porosity analysis of the along-shelf clinoform deposit in the East China Sea

More Information
  • Received Date: September 12, 2016
  • Revised Date: December 22, 2016
  • Porosity is an important physical parameter of seabed sediments. However, the traditional method for porosity acquisition remains insufficient. In this study, we measured the porosity of the sediment core SS4 taken from the along-shelf clinoform deposit in the East China Sea with a medical CT-Scanner, and extracted the CT numbers one by one in vertical direction. By comparison of the CT numbers with the porosities obtained from the tube method, an empirical formula is derived between CT number and porosity for the clinoform deposit in the East China Sea. It is found that the CT number is poorly correlated with the porosity acquired from the tube method, when the vertical composition of the core was inhomogeneous, owing to the texture inconsistency of samples. However, the empirical formula acquired from the core sections where occur high correlations between CT numbers and porosities should have higher reliability. Thus we recommend the CT scanning method as a fast and nondestructive method for measurement and observation of sediment porosities.
  • [1]
    Bennett R H, Lambert D N. Rapid and reliable technique for determining unit weight and porosity of deep-sea sediments[J]. Marine Geology, 1971, 11(3): 201-207. doi: 10.1016/0025-3227(71)90007-7
    [2]
    Brown K M, Ransom B. Porosity corrections for smectite-rich sediments: impact on studies of compaction, fluid generation, and tectonic history[J]. Geology, 1996, 24(9): 843-846. doi: 10.1130/0091-7613(1996)024<0843:PCFSRS>2.3.CO;2
    [3]
    Xu S Y, White R E. A new velocity model for clay-sand mixtures[J]. Geophysical Prospecting, 1995, 43(1): 91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
    [4]
    Marion D, Nur A, Yin H, et al. Compressional velocity and porosity in sand-clay mixtures[J]. Geophysics, 1992, 57(4): 554-563. doi: 10.1190/1.1443269
    [5]
    Erickson S N, Jarrard R D. Velocity-porosity relationships for water-saturated siliciclastic sediments[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30385-30406. doi: 10.1029/98JB02128
    [6]
    Tudge J, Tobin H J. Velocity-porosity relationships in smectite-rich sediments: Shikoku Basin, Japan[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5194-5207. doi: 10.1002/2013GC004974
    [7]
    Cnudde V, Masschaele B, Dierick M, et al. Recent progress in X-ray CT as a geosciences tool[J]. Applied Geochemistry, 2006, 21(5): 826-832. doi: 10.1016/j.apgeochem.2006.02.010
    [8]
    Ketcham R A, Carlson W D. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences[J]. Computers & Geosciences, 2001, 27(4): 381-400. https://www.sciencedirect.com/science/article/pii/S0098300400001163
    [9]
    Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications[J]. Earth-Science Reviews, 2013, 123: 1-17. doi: 10.1016/j.earscirev.2013.04.003
    [10]
    Baker D R, Mancini L, Polacci M, et al. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks[J]. Lithos, 2012, 148: 262-276. doi: 10.1016/j.lithos.2012.06.008
    [11]
    Mayo S, Josh M, Nesterets Y, et al. Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal[J]. Fuel, 2015, 154: 167-173. doi: 10.1016/j.fuel.2015.03.046
    [12]
    Shigeki J, Jiro N, Satoshi T, et al. Structural investigation of methane hydrate sediments by microfocus X-ray computed tomography technique under high-pressure conditions[J]. Japanese Journal of Applied Physics, 2006, 45(7L): L714-L716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=455c6cbdc64a50f8846c3d4741ce6e9c
    [13]
    李承峰, 胡高伟, 刘昌岭, 等. X射线计算机断层扫描在天然气水合物研究中的应用[J].热带海洋学报, 2012, 31(5): 93-99. doi: 10.3969/j.issn.1009-5470.2012.05.014

    LI Chengfeng, HU Gaowei, LIU Changling, et al. Application of X-ray computed tomography in natural gas hydrate research[J]. Journal of Tropical Oceanography, 2012, 31(5): 93-99. doi: 10.3969/j.issn.1009-5470.2012.05.014
    [14]
    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21. https://www.jstor.org/stable/30060512
    [15]
    肖尚斌, 李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016

    XIAO Shangbin, LI Anchun. A study on environmentally sensitive grain-size population in inner shelf of the East China Sea[J]. Acta Sedimentologica Sinica, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016
    [16]
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
    [17]
    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013
    [18]
    Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003
    [19]
    Best A I, Gunn D E. Calibration of marine sediment core loggers for quantitative acoustic impedance studies[J]. Marine Geology, 1999, 160(1-2): 137-146. doi: 10.1016/S0025-3227(99)00017-1
    [20]
    Boespflug X, Long B F N, Occhietti S. CAT-scan in marine stratigraphy: a quantitative approach[J]. Marine Geology, 1995, 122(4): 281-301. doi: 10.1016/0025-3227(94)00129-9
    [21]
    St-Onge G, Mulder T, Francus P, et al. Chapter two continuous physical properties of cored marine sediments[J]. Developments in Marine Geology, 2007, 1: 63-98. doi: 10.1016/S1572-5480(07)01007-X
    [22]
    Fortin D, Francus P, Gebhardt A C, et al. Destructive and non-destructive density determination: method comparison and evaluation from the Laguna Potrok Aike sedimentary record[J]. Quaternary Science Reviews, 2013, 71: 147-153. doi: 10.1016/j.quascirev.2012.08.024
    [23]
    Orsi T H, Edwards C M, Anderson A L. X-ray computed tomography: a nondestructive method for quantitative analysis of sediment cores[J]. Journal of Sedimentary Research, 1994, 64(3): 690-693.
    [24]
    Orsi T H, Anderson A L. Bulk density calibration for X-ray tomographic analyses of marine sediments[J]. Geo-Marine Letters, 1999, 19(4): 270-274. doi: 10.1007/s003670050118
    [25]
    Tanaka A, Nakano T, Ikehara K. X-ray computerized tomography analysis and density estimation using a sediment core from the Challenger Mound area in the Porcupine Seabight, off Western Ireland[J]. Earth, Planets and Space, 2011, 63(2): 103-110. doi: 10.5047/eps.2010.12.006
    [26]
    Coles M E, Muegge E L, Sprunt E S. Applications of CAT scanning for oil and gas production[J]. IEEE Transactions on Nuclear Science, 1991, 38(2): 510-515. doi: 10.1109/23.289350
    [27]
    Lu J, Li A C, Huang P, et al. Mineral distributions in surface sediments of the western South Yellow Sea: implications for sediment provenance and transportation[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 510-524. doi: 10.1007/s00343-015-4106-x
  • Related Articles

    [1]LU Yamin, SU Kefan, FU Fanfei, HUANG Baoqi, LIU Lejun, WANG Na. X-ray CT scanning technique and its application to the Core 01 in the northern South China Sea for sedimentary environment reconstruction[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 215-221. DOI: 10.16562/j.cnki.0256-1492.2020110901
    [2]WANG Linmiao, LI Guangxue. HIGH-RESOLUTION SEDIMENTARY RECORDS OF THE MUDDY AREA IN THE SOUTH YELLOW SEA AND EAST CHINA SEA: A REVIEW OF NEW PROGRESS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 167-174. DOI: 10.3724/SP.J.1140.2014.03167
    [3]XU Taoyu, SHI Xuefa, LIU Shengfa, QIAO Shuqing, YANG Gang, WANG Guoqing, WANG Kunshan, WANG Xuchen. THE COLOR REFLECTANCE FEATURES OF THE SEDIMENTS IN MUD AREA ON THE INNER SHELF OF THE EAST CHINA SEA AND ITS PALEOCLIMATIC IMPLICATIONS FOR RECENT 2 ka[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 149-158. DOI: 10.3724/SP.J.1140.2012.06149
    [4]LI Xiaoyan, JIAN Zhimin, SHI Xuefa, LIU Shengfa. HOLOCENE FORAMINIFERA FROM THE MUD AREA OF THE INNER SHELF,EAST CHINA SEA AND THEIR PALEOENVIRONMENTAL SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 61-71. DOI: 10.3724/SP.J.1140.2012.04061
    [5]ZHU Aimei, LIU Jihua, ZHANG Hui, BAI Yazhi, CUI Jingjing, LIU Shengfa. DISTRIBUTION PATTERN OF REES IN THE INNER-SHELF MUD AREA OF EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 1-10. DOI: 10.3724/SP.J.1140.2012.01001
    [6]SHI Xuefa, LIU Shengfa, QIAO Shuqing, LIU Yanguang, FANG Xisheng, WU Yonghua, ZhU Zhiwei. DEPOSITIONAL FEATURES ANG PALAEOENVIRONMENTAL RECORDS OF THE MUD DEPOSITS IN MIN-ZHE COASTAL MUD AREA,EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 19-30. DOI: 10.3724/SP.J.1140.2010.04019
    [7]LIU Shengfa, SHI Xuefa, LIU Yanguang, ZHU Aimei, YANG Gang. SEDIMENTATION RATE OF MUD AREA IN THE EAST CHINA SEA INNER CONTINENTAL SHELF[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 1-7. DOI: 10.3724/SP.J.1140.2009.06001
    [8]ZHAO Quanhong, JIAN Zhimin, ZHANG Zaixiu, CHENG Xinrong, WANG Ke, ZHENG Hongbo. HOLOCENE PALEOENVIRONMENTAL CHANGES OF THE INNER-SHELF MUD AREA OF THE EAST CHINA SEA: EVIDENCE FROM FORAMINIFERAL FAUNAS[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 75-82. DOI: 10.3724/SP.J.1140.2009.02075
    [9]REN Hui-ru, KANG Jian-cheng, WANG Tian-tian, AN Yan. SPATIAL DISTRIBUTION OF WARM CORE OF KUROSHIO IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 77-84.
    [10]SUN Xiao-yan, LI Guang-xue, LIU Yong, MA Yan-yan, LI Jun-jie. RESPONSE OF ENVIRONMENTAL SENSITIVE GRAIN SIZE GROUP IN CORE FJ04 FROM MUD AREA IN THE NORTH OF EAST CHINA SEA TO EAST ASIAN WINTER MONSOON EVOLVEMENT[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 11-17. DOI: 10.3724/SP.J.1140.2008.03011
  • Cited by

    Periodical cited type(11)

    1. 徐凯军,刘鑫,于会臻,石双虎. 基于重磁数据融合的青格里底区块火成岩岩性识别. 石油地球物理勘探. 2025(01): 225-233+272 .
    2. 李金洋,张建兴,栾振东,阳凡林. 冲绳海槽中部热液区地形复杂度研究. 海洋测绘. 2023(06): 38-41 .
    3. 骆迪,蔡峰,闫桂京,李清,孙运宝,董刚,李昂. 冲绳海槽西部陆坡泥底辟和泥火山特征及其形成动力机制. 海洋地质与第四纪地质. 2021(06): 91-101 . 本站查看
    4. 仲伟军,王意,李天明,贾春明,郭忠,张鹏越. 重磁电震井综合地球物理技术应用研究——以西北缘车排子凸起南部石炭系火山岩为例. 新疆地质. 2020(02): 222-226 .
    5. 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理. 地球科学进展. 2020(07): 678-690 .
    6. 李昂,蔡峰,吴能友,李清,闫桂京,孙运宝,董刚,骆迪. 冲绳海槽中部海底气体排放分布特征及其控制因素. 海洋地质与第四纪地质. 2020(05): 118-126 . 本站查看
    7. 仲伟军,党志敏,郭忠. 重磁电震综合物探技术在准噶尔盆地车排子凸起南火山岩性预测中的应用. 复杂油气藏. 2019(03): 32-36 .
    8. 周耀明,朱文斌,陈正乐,朱炳玉,薛峰. 准噶尔盆地克-百断裂带火山岩分布特征的重磁资料解释. 地震地质. 2018(03): 641-655 .
    9. 张玉祥,曾志刚,殷学博,李禾,齐海燕,王晓媛,陈帅. 冲绳海槽海底热液区附近浮岩气孔充填沉积物中热液活动的地球化学记录. 海洋地质与第四纪地质. 2018(05): 102-111 . 本站查看
    10. 尚鲁宁,张勇,张训华,曹瑞,孙治雷. 东海陆架外缘区构造特征及其成因机制. 海洋与湖沼. 2018(06): 1178-1189 .
    11. 曾志刚,张玉祥,陈祖兴,马瑶,王晓媛,张丹丹,李晓辉. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动. 海洋科学集刊. 2016(00): 3-36 .

    Other cited types(4)

Catalog

    Article views (2214) PDF downloads (20) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return