JIANG Hong, RAO Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 185-197. DOI: 10.16562/j.cnki.0256-1492.2018.02.019
Citation: JIANG Hong, RAO Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 185-197. DOI: 10.16562/j.cnki.0256-1492.2018.02.019

Research progress on fire history reconstruction and its implications for climate change and human activities

More Information
  • Received Date: August 02, 2016
  • Revised Date: December 14, 2016
  • Fire plays an paroxysmal-driving role in the earth ecosystem, and is of great significance in the evolution of human civilization. This review has roundly summarized the principles, methods and achievements of fire history reconstruction in a global scale, taking biofuel imcomplete combustion remains as proxies, which include charcoal, black carbon, tree-ring fire scar, polycyclic aromatic hydrocarbons and levoglucosan. In general, on the time scale, charcoal, black carbon and levoglucosan are mostly used as proxies of millennial-scale fire history or longer, tree-ring fire scar is often used for reconstructing forest fire history, and polycyclic aromatic hydrocarbons are usually used for reconstructing the fire usage history in human production and living after the Industrial Revolution 200 years ago, which demonstrate the quick increasing in human population and rapid development of the social economy. These proxies are compared, and their complexity analyzed in this paper. Fire have close affinities with processes of rapid climate change and wet-dry level of climate, while in the Holocene, they are closely related to human activities of producing and living. In the future research, efforts should be made to reduce the uncertainty of fire history reconstruction. Meanwhile, the relationship between fire history and human activities needs further research.
  • [1]
    Hao W M, Ward D E, Olbu G, et al. Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D19): 23577-23584. doi: 10.1029/95JD02198
    [2]
    Blomqvist P, Persson B, Simonson M. Fire emissions of organics into the atmosphere[J]. Fire Technology, 2007, 43(3): 213-231. doi: 10.1007/s10694-007-0011-y
    [3]
    Al-Naiema I, Estillore A D, Mudunkotuwa I A, et al. Impacts of co-firing biomass on emissions of particulate matter to the atmosphere[J]. Fuel, 2015, 162: 111-120. doi: 10.1016/j.fuel.2015.08.054
    [4]
    Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the earth system[J]. Science, 2009, 324(5926): 481-484. doi: 10.1126/science.1163886
    [5]
    吕爱锋, 田汉勤.气候变化、火干扰与生态系统生产力[J].植物生态学报, 2007, 31(2): 242-251. doi: 10.3321/j.issn:1005-264X.2007.02.007

    Aifeng, TIAN Hanqin. Interaction among climatic change, fire disturbance and ecosystem productivity[J]. Journal of Plant Ecology, 2007, 31(2): 242-251. doi: 10.3321/j.issn:1005-264X.2007.02.007
    [6]
    Li F, Bond-Lamberty B, Levis S. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th Century[J]. Biogeosciences, 2014, 11(5): 1345-1360. doi: 10.5194/bg-11-1345-2014
    [7]
    周道玮.草地火的生态学意义[J].草业科学, 1994, 11(2): 10-14. http://www.cqvip.com/Main/Detail.aspx?id=1298897

    ZHOU Daowei. The ecological sionificance of grassland fire[J]. Pratacultural Science, 1994, 11(2): 10-14. http://www.cqvip.com/Main/Detail.aspx?id=1298897
    [8]
    黄文几.火的生态学意义[J].自然杂志, 1983, 6(6): 425-430, 480.

    HUANG Wenji. The eco-significance of fire[J]. Nature Magazine, 1983, 6(6): 425-429, 480.
    [9]
    Van Langevelde F, Van De Vijver C A D M, Kumar L, et al. Effects of fire and herbivory on the stability of savanna ecosystems[J]. Ecology, 2003, 84(2): 337-350. doi: 10.1890/0012-9658(2003)084[0337:EOFAHO]2.0.CO;2
    [10]
    周振宇, 关莹, 王春雪, 等.旧石器时代的火塘与古人类用火[J].人类学学报, 2012, 31(1): 24-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlxxb201201003

    ZHOU Zhenyu, GUAN Ying, WANG Chunxue, et al. Remains of human Fire-use: An overview of paleolithic hearth and human fire-use behavior[J]. Acta Anthropologica Sinica, 2012, 31(1): 24-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlxxb201201003
    [11]
    Blarquez O, Ali A A, Girardin M P, et al. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers[J]. Scientific Reports, 2015, 5: 13356. doi: 10.1038/srep13356
    [12]
    Jolly W M, Cochrane M A, Freeborn P H, et al. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 2015, 6: 7537. doi: 10.1038/ncomms8537
    [13]
    Marlon J, Bartlein P J, Whitlock C. Fire-fuel-climate linkages in the northwestern USA during the Holocene[J]. The Holocene, 2006, 16(8): 1059-1071. doi: 10.1177/0959683606069396
    [14]
    Marlon J R, Bartlein P J, Gavin D G, et al. Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3203-3204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000002369021
    [15]
    Boer M M, Price O F, Bradstock R A. Wildfires: Weigh policy effectiveness[J]. Science, 2015, 350(6263): 920. https://www.ncbi.nlm.nih.gov/pubmed/26586753
    [16]
    Huang C C, Pang J L, Chen S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1-2): 28-44. doi: 10.1016/j.palaeo.2006.01.004
    [17]
    Zou S L, Li R C, Xie S C, et al. Paleofire indicated by polycyclic aromatic hydrocarbons in soil of Jinluojia archaeological site, Hubei, China[J]. Journal of Earth Science, 2010, 21(3): 247-256. doi: 10.1007/s12583-010-0089-x
    [18]
    Musa Bandowe B A, Srinivasan P, Seelge M, et al. A 2600-year record of past polycyclic aromatic hydrocarbons (PAHs) deposition at Holzmaar (Eifel, Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 401: 111-121. doi: 10.1016/j.palaeo.2014.02.021
    [19]
    Maxwell A L. Fire regimes in north-eastern Cambodian monsoonal forests, with a 9300-year sediment charcoal record[J]. Journal of Biogeography, 2004, 31(2): 225-239. doi: 10.1046/j.0305-0270.2003.01015.x
    [20]
    谭志海, 黄春长, 庞奖励, 等.周原全新世土壤剖面木炭屑与野火活动的关系研究[J].中国生态农业学报, 2005, 13(2): 31-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200502010

    TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Relationship between soil charcoal in Holocene and wildfire in the Zhouyuan Region[J]. Chinese Journal of Eco-Agriculture, 2005, 13(2): 31-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200502010
    [21]
    Daniau A L, Sanchez Goni M F, Martinez P, et al. Orbital-scale climate forcing of grassland burning in southern Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 5069-5073. doi: 10.1073/pnas.1214292110
    [22]
    Daniau A L, Sánchez-Goni M F, Beaufort L, et al. Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia[J]. Quaternary Science Reviews, 2007, 26(9-10): 1369-1383. doi: 10.1016/j.quascirev.2007.02.005
    [23]
    沈吉, 薛滨, 吴敬禄, 等.湖泊沉积与环境演化[M].北京:科学出版社, 2010: 282-286

    SHEN Ji, XUE Bin, WU Jinglu, et al.Lake Deposition and Environmental Evolution[M].Beijing:Science Press, 2012:282-286.
    [24]
    李小强, 周新郢, 尚雪, 等.黄土炭屑分级统计方法及其在火演化研究中的意义[J].湖泊科学, 2006, 18(5): 540-544. doi: 10.3321/j.issn:1003-5427.2006.05.017

    LI Xiaoqiang, ZHOU Xinying, SHANG Xue, et al. Different-(kPa/℃) size method of charcoal analysis in loess and its significance in the study of fire variation[J]. Journal of Lake Sciences, 2006, 18(5): 540-544. doi: 10.3321/j.issn:1003-5427.2006.05.017
    [25]
    Power M J, Marlon J, Ortiz N, et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics, 2008, 30(7-8): 887-907. doi: 10.1007/s00382-007-0334-x
    [26]
    Tinner W, Conedera M, Ammann B, et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920[J]. The Holocene, 1998, 8(1): 31-42. doi: 10.1191/095968398667205430
    [27]
    Behling H. Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland[J]. Vegetation History and Archaeobotany, 2003, 12(4): 263-270. doi: 10.1007/s00334-003-0020-9
    [28]
    Behling H. A 2860-year high-resolution pollen and charcoal record from the Cordillera de Talamanca in Panama: a history of human and volcanic forest disturbance[J]. The Holocene, 2000, 10(3): 387-393. doi: 10.1191/095968300668797683
    [29]
    Tinner W, Hu F S, Beer R, et al. Postglacial vegetational and fire history: Pollen, plant macrofossil and charcoal records from two Alaskan lakes[J]. Vegetation History and Archaeobotany, 2006, 15(4): 279-293. doi: 10.1007/s00334-006-0052-z
    [30]
    Tan Z H, Han Y M, Cao J J, et al. Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China[J]. Quaternary Science Reviews, 2015, 109: 76-87. doi: 10.1016/j.quascirev.2014.11.013
    [31]
    Kitzberger T, Brown P M, Heyrdahl E K, et al. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(2): 543-548. doi: 10.1073/pnas.0606078104
    [32]
    王晓春, 及莹.树木年轮火历史研究进展[J].植物生态学报, 2009, 33(3): 587-597. doi: 10.3773/j.issn.1005-264x.2009.03.018

    WANG Xiaochun, JI Ying. Review of advances in dendropyrochronology[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 587-597. doi: 10.3773/j.issn.1005-264x.2009.03.018
    [33]
    Trouet V, Taylor A H, Wahl E R, et al. Fire-climate interactions in the American West since 1400 CE[J]. Geophysical Research Letters, 2010, 37(4): L04702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e88f9038c1721298761c3db5949f9d6d
    [34]
    Niklasson M, Zin E, Zielonka T, et al. A 350-year tree-ring fire record from Bialowieza Primeval Forest, Poland: Implications for Central European lowland fire history[J]. Journal of Ecology, 2010, 98(6): 1319-1329. doi: 10.1111/j.1365-2745.2010.01710.x
    [35]
    Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695): 767-769. doi: 10.1038/29507
    [36]
    Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (North-Central China): indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59: 18-29. doi: 10.1016/j.quascirev.2012.10.033
    [37]
    明镜, 效存德, 孙俊英.雪冰中黑碳的测试分析方法综述[J].地球物理学进展, 2005, 20(3): 859-863. doi: 10.3969/j.issn.1004-2903.2005.03.046

    MING Jing, XIAO Cunde, SUN Junying. The general statement on the measuring methods for black carbon in snow and ice[J]. Progress in Geophysics, 2005, 20(3): 859-863. doi: 10.3969/j.issn.1004-2903.2005.03.046
    [38]
    王旭, 于赤灵, 彭平安, 等.沉积物中黑碳的提取和测定方法:误差分析和回收率实验[J].地球化学, 2001, 30(5): 439-444. doi: 10.3321/j.issn:0379-1726.2001.05.005

    WANG Xu, YU Chiling, PENG Pingan, et al. Extraction and determination of black carbon in sediments: Error analysis and recovery ratio experiment[J]. Geochimica, 2001, 30(5): 439-444. doi: 10.3321/j.issn:0379-1726.2001.05.005
    [39]
    Lehndorff E, Wolf M, Litt T, et al. 15, 000 years of black carbon deposition - A post-glacial fire record from maar lake sediments (Germany)[J]. Quaternary Science Reviews, 2015, 110: 15-22. doi: 10.1016/j.quascirev.2014.12.014
    [40]
    Bird M I, Ascough P L. Isotopes in pyrogenic carbon: A review[J]. Organic Geochemistry, 2012, 42(12): 1529-1539. doi: 10.1016/j.orggeochem.2010.09.005
    [41]
    Jia G D, Peng P A, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea[J]. Geology, 2003, 31(12): 1093-1096. doi: 10.1130/G19992.1
    [42]
    Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 86-94. doi: 10.1016/j.palaeo.2015.06.004
    [43]
    贾国东, 彭平安, 盛国英, 等.南沙海区末次冰期以来黑碳的沉积记录[J].科学通报, 2000, 45(6): 646-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200006019

    JIA Guodong, PENG Pingan, SHENG Guoying, et al. Sedimentary records of black carbon in the sea area of the Nansha Islands since the last glaciation[J]. Chinese Science Bulletin, 2000, 45(17): 1594-1597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200006019
    [44]
    Sun X S, Peng P A, Song J Z, et al. Sedimentary record of black carbon in the Pearl River estuary and adjacent northern South China Sea[J]. Applied Geochemistry, 2008, 23(12): 3464-3472. doi: 10.1016/j.apgeochem.2008.08.006
    [45]
    Venkatesan M I, Dahl J. Organic geochemical evidence for global fires at the Cretaceous/Tertiary Boundary[J]. Nature, 1989, 338(6210): 57-60. doi: 10.1038/338057a0
    [46]
    Nabbefeld B, Grice K, Summons R E, et al. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections[J]. Applied Geochemistry, 2010, 25(9): 1374-1382. doi: 10.1016/j.apgeochem.2010.06.008
    [47]
    Jiang C Q, Alexander R, Kagi R I, et al. Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate[J]. Organic Geochemistry, 1998, 29(5-7): 1721-1735. doi: 10.1016/S0146-6380(98)00083-7
    [48]
    Jiang C Q, Alexander R, Kagi R I, et al. Origin of perylene in ancient sediments and its geological significance[J]. Organic Geochemistry, 2000, 31(12): 1545-1559. doi: 10.1016/S0146-6380(00)00074-7
    [49]
    Arinobu T, Ishiwatari R, Kaiho K, et al. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain[J]. Geology, 1999, 27(8): 723-726. doi: 10.1130/0091-7613(1999)027<0723:SOPPAH>2.3.CO;2
    [50]
    Hossain H M Z, Sampei Y, Roser B P. Polycyclic aromatic hydrocarbons (PAHs) in late Eocene to early Pleistocene mudstones of the Sylhet succession, NE Bengal Basin, Bangladesh: Implications for source and paleoclimate conditions during Himalayan uplift[J]. Organic Geochemistry, 2013, 56: 25-39. doi: 10.1016/j.orggeochem.2012.12.001
    [51]
    Sun L, Zang S Y. History of fuel consumption inferred from polycyclic aromatic hydrocarbons in sediments from the South Lianhuan Lake, Northeast China[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6): 1027-1032. doi: 10.1007/s00128-012-0600-4
    [52]
    Barra R, Popp P, Quiroz R, et al. Polycyclic aromatic hydrocarbons fluxes during the past 50 years observed in dated sediment cores from Andean mountain lakes in central south Chile[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 52-60. doi: 10.1016/j.ecoenv.2005.07.025
    [53]
    Denis E H, Toney J L, Tarozo R, et al. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection[J]. Organic Geochemistry, 2012, 45: 7-17. doi: 10.1016/j.orggeochem.2012.01.005
    [54]
    Mai B X, Qi S H, Zeng E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis[J]. Environmental Science & Technology, 2003, 37(21): 4855-4863. https://www.ncbi.nlm.nih.gov/pubmed/14620810
    [55]
    Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5
    [56]
    Yuan Z J, Liu G J, Wang R W, et al. Polycyclic aromatic hydrocarbons in sediments from the Old Yellow River Estuary, China: Occurrence, sources, characterization and correlation with the relocation history of the Yellow River[J]. Ecotoxicology and Environmental Safety, 2014, 109: 169-176. doi: 10.1016/j.ecoenv.2014.08.024
    [57]
    Liu Y, Yu N, Li Z, et al. Sedimentary record of PAHs in the Liangtan River and its relation to socioeconomic development of Chongqing, Southwest China[J]. Chemosphere, 2012, 89(7): 893-899. doi: 10.1016/j.chemosphere.2012.05.016
    [58]
    Guo J Y, Wu F C, Luo X J, et al. Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China[J]. Environmental Pollution, 2010, 158(6): 2175-2180. doi: 10.1016/j.envpol.2010.02.018
    [59]
    Guo W, Pei Y S, Yang Z F, et al. Historical changes in polycyclic aromatic hydrocarbons (PAHs) input in Lake Baiyangdian related to regional socio-economic development[J]. Journal of Hazardous Materials, 2011, 187(1-3): 441-449. doi: 10.1016/j.jhazmat.2011.01.052
    [60]
    Bakhtiari A R, Zakaria M P, Yaziz M I, et al. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: Perylene as indicator of land plant-derived hydrocarbons[J]. Applied Geochemistry, 2009, 24(9): 1777-1787. doi: 10.1016/j.apgeochem.2009.05.008
    [61]
    Marynowski L, Kubik R, Uhl D, et al. Molecular composition of fossil charcoal and relationship with incomplete combustion of wood[J]. Organic Geochemistry, 2014, 77: 22-31. doi: 10.1016/j.orggeochem.2014.09.003
    [62]
    刘建华, 祁士华, 张干, 等.湖北梁子湖沉积物正构烷烃与多环芳烃对环境变迁的记录[J].地球化学, 2004, 33(5): 501-506. doi: 10.3321/j.issn:0379-1726.2004.05.010

    LIU Jianhua, QI Shihua, ZHANG Gan, et al. Response of the n-alkanes and polycyclic aromatic hydrocarbons records in sediments from Lake Liangzi to the environmental change[J]. Geochimica, 2004, 33(5): 501-506. doi: 10.3321/j.issn:0379-1726.2004.05.010
    [63]
    Liu L Y, Wang J Z, Wei G L, et al. Sediment records of polycyclic aromatic hydrocarbons (PAHs) in the continental shelf of China: Implications for evolving anthropogenic impacts[J]. Environmental Science & Technology, 2012, 46(12): 6497-6504. doi: 10.1021/es300474z
    [64]
    刘军利.木质纤维类生物质定向热解行为研究[D].中国林业科学研究院博士学位论文, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82201-1011247031.htm

    LIU Junli. Study on directed pyrolysis of lignocellulose biomass[D]. Doctor Dissertation of Chinese Academy of Forestry, 2011.] http://cdmd.cnki.com.cn/Article/CDMD-82201-1011247031.htm
    [65]
    Elias V O, Simoneit B R T, Cordeiro R C, et al. Evaluating levoglucosan as an indicator of biomass burning in Carajás, amazônia: A comparison to the charcoal record[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 267-272. doi: 10.1016/S0016-7037(00)00522-6
    [66]
    Simoneit B R T, Schauer J J, Nolte C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric Environment, 1999, 33(2): 173-182. doi: 10.1016/S1352-2310(98)00145-9
    [67]
    Schüpbach S, Kirchgeorg T, Colombaroli D, et al. Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala[J]. Quaternary Science Reviews, 2015, 115: 123-131. doi: 10.1016/j.quascirev.2015.03.004
    [68]
    Zennaro P, Kehrwald N, Marlon J, et al. Europe on fire three thousand years ago: Arson or climate?[J]. Geophysical Research Letters, 2015, 42(12): 5023-5033. doi: 10.1002/2015GL064259
    [69]
    赵致奎.基于树轮火疤重建大兴安岭北部林区火历史[D].东北林业大学硕士学位论文, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242610.htm

    ZHAO Zhikui. Reconstruction of tree-ring fire history in the North Daxing'an Mountains[D]. Master Dissertation of Northeast Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242610.htm
    [70]
    占长林, 曹军骥, 韩永明, 等.古火灾历史重建的研究进展[J].地球科学进展, 2011, 26(12): 1248-1259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201112002

    ZHAN Changlin, CAO Junji, HAN Yongming, et al. Research progress on reconstruction of paleofire history[J]. Advances in Earth Science, 2011, 26(12): 1248-1259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201112002
    [71]
    穆燕, 秦小光, 刘嘉麒, 等.黑碳的研究历史与现状[J].海洋地质与第四纪地质, 2011, 31(1): 143-155. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f829e09-9183-4574-b67e-675a2eed4a9f

    MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: History and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 143-155. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f829e09-9183-4574-b67e-675a2eed4a9f
    [72]
    Haritash A K, Kaushik C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1-15. doi: 10.1016/j.jhazmat.2009.03.137
    [73]
    Tinner W, Hofstetter S, Zeugin F, et al. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps - Implications for fire history reconstruction[J]. The Holocene, 2006, 16(2): 287-292. doi: 10.1191/0959683606hl925rr
    [74]
    曹军骥, 占长林.黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J].地球科学与环境学报, 2011, 33(2): 177-184. doi: 10.3969/j.issn.1672-6561.2011.02.013

    CAO Junji, ZHAN Changlin. Research significance and role of black carbon in the global climate and environmental systems[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 177-184. doi: 10.3969/j.issn.1672-6561.2011.02.013
    [75]
    Manahan S E.环境化学[M].孙红文, 汪磊, 王翠萍, 等译. 9版.北京: 高等教育出版社, 2013: 284.

    Manahan S E. Environmental Chemistry[M]. SUN Hongwen, WANG Lei, WANG Cuiping, et al, Trans. 9th ed. Beijing: Higher Education Press, 2013: 284.
    [76]
    Lai C Y, Liu Y C, Ma J Z, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions [J]. Atmospheric Environment, 2014, 91: 32-39. doi: 10.1016/j.atmosenv.2014.03.054
    [77]
    Major J, Lehmann J, Rondon M, et al. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration[J]. Global Change Biology, 2010, 16(4): 1366-1379. doi: 10.1111/j.1365-2486.2009.02044.x
    [78]
    Hockaday W C, Grannas A M, Kim S, et al. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil[J]. Organic Geochemistry, 2006, 37(4): 501-510. doi: 10.1016/j.orggeochem.2005.11.003
    [79]
    Johnsen A R, Karlson U. PAH degradation capacity of soil microbial communities - Does it depend on PAH exposure?[J]. Microbial Ecology, 2005, 50(4): 488-495. doi: 10.1007/s00248-005-0022-5
    [80]
    Sayara T, Pognani M, Sarrà M, et al. Anaerobic degradation of PAHs in soil: Impacts of concentration and amendment stability on the PAHs degradation and biogas production[J]. International Biodeterioration & Biodegradation, 2010, 64(4): 286-292. https://www.sciencedirect.com/science/article/pii/S0964830510000338
    [81]
    Ghosal D, Ghosh S, Dutta T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review[J]. Frontiers in Microbiology, 2016, 7: 1369. https://www.ncbi.nlm.nih.gov/pubmed/27630626/
    [82]
    Baker W L, Ehle D. Uncertainty in surface-fire history: The case of ponderosa pine forests in the western United States[J]. Canadian Journal of Forest Research, 2001, 31(7): 1205-1226. doi: 10.1139/x01-046
    [83]
    Westerling A L, Hidalgo H G, Cayan D R, et al. Warming and earlier spring increase western U.S. forest wildfire activity[J]. Science, 2006, 313(5789): 940-943. doi: 10.1126/science.1128834
    [84]
    Liu Y Q, Goodrick S L, Stanturf J A. Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario[J]. Forest Ecology And Management, 2013, 294: 120-135. doi: 10.1016/j.foreco.2012.06.049
    [85]
    Clark J S. Effect of climate change on fire regimes in northwestern Minnesota[J]. Nature, 1988, 334(6179): 233-235. doi: 10.1038/334233a0
    [86]
    Parisien M A, Moritz M A. Environmental controls on the distribution of wildfire at multiple spatial scales[J]. Ecological Monographs, 2009, 79(1): 127-154. doi: 10.1890/07-1289.1
    [87]
    Oris F, Asselin H, Ali A A, et al. Effect of increased fire activity on global warming in the boreal forest[J]. Environmental Reviews, 2014, 22(3): 206-219. doi: 10.1139/er-2013-0062
    [88]
    Goetz S J, Mack M C, Gurney K R, et al. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: Observations and model results contrasting northern Eurasia and North America[J]. Environmental Research Letters, 2007, 2(4): 045031. doi: 10.1088/1748-9326/2/4/045031
    [89]
    Wolbach W S, Gilmour I, Anders E, et al. Global fire at the Cretaceous-Tertiary boundary[J]. Nature, 1988, 334(6184): 665-669. doi: 10.1038/334665a0
    [90]
    Marlon J R, Bartlein P J, Walsh M K, et al. Wildfire responses to abrupt climate change in North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(8): 2519-2524. doi: 10.1073/pnas.0808212106
    [91]
    Wolbach W S, Lewis R S, Andeers E. Cretaceous extinctions: Evidence for wildfires and search for meteoritic material[J]. Science, 1985, 230(4722): 167-170. doi: 10.1126/science.230.4722.167
    [92]
    Belcher C M. Impacts and wildfires - An analysis of the K-T event[M]//Cockell C, Gilmour I, Koeberl C. Biological Processes Associated with Impact Events. Berlin, Heidelberg: Springer, 2006: 221-243.
    [93]
    Scott A C, Lomax B H, Collinson M E, et al. Fire across the K-T boundary: Initial results from the Sugarite Coal, New Mexico, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1-4): 381-395. doi: 10.1016/S0031-0182(00)00182-6
    [94]
    Power M J, Marlon J R, Bartlein P J, et al. Fire history and the Global Charcoal Database: A new tool for hypothesis testing and data exploration[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1-2): 52-59. doi: 10.1016/j.palaeo.2009.09.014
    [95]
    Montoya E, Rull V. Gran Sabana fires (SE Venezuela): A paleoecological perspective[J]. Quaternary Science Reviews, 2011, 30(23-24): 3430-3444. doi: 10.1016/j.quascirev.2011.09.005
    [96]
    Schoennagel T, Veblen T T, Romme W H, et al. Enso and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests[J]. Ecological Applications, 2005, 15(6): 2000-2014. doi: 10.1890/04-1579
    [97]
    万里鹏, 关兴民, 万正奎, 等.大兴安岭森林火灾的气候背景[J].森林防火, 1996(2): 18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600803613

    WAN Lipeng, GUAN Xingmin, WAN Zhengkui, et al. The climate conditions of forest fire in Great Khingan[J]. Forest Fire Prevention, 1996(2): 18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600803613
    [98]
    Tan Z H, Huang C C, Pang J L, et al. Wildfire history and climatic change in the semi-arid loess tableland in the middle reaches of the Yellow River of China during the Holocene: Evidence from charcoal records[J]. The Holocene, 2013, 23(10): 1466-1476. doi: 10.1177/0959683613493936
    [99]
    Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2): 9-19. doi: 10.1016/j.palaeo.2005.03.023
    [100]
    Zhang Z Q, Zhong J J, Lv X G, et al. Climate, vegetation, and human influences on late-Holocene fire regimes in the Sanjiang plain, northeastern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 1-8. doi: 10.1016/j.palaeo.2015.07.028
    [101]
    李兴华, 武文杰, 张存厚, 等.气候变化对内蒙古东北部森林草原火灾的影响[J].干旱区资源与环境, 2011, 25(11): 114-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201111020

    LI Xinghua, WU Wenjie, ZHANG Cunhou, et al. Influence of climate change on north-eastern of Inner Mongolia grassland forest fire[J] Journal of Arid Land Resources and Environment, 2011, 25(11): 114-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201111020
    [102]
    李兴华, 任丽媛, 刘秀荣.气候变化对内蒙古草原火灾的影响[J].干旱区资源与环境, 2014, 28(4): 129-133. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201404022

    LI Xinghua, REN Liyuan, LIU Xiurong. Impact of climate change on the grassland fires in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2014, 28(4): 129-133. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201404022
    [103]
    陶玉柱, 邸雪颖, 金森.我国森林火灾发生的时空规律研究[J].世界林业研究, 2013, 26(5): 75-80. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201305014

    TAO Yuzhu, DI Xueying, JIN Sen. Research on temporal and spatial distribution of forest fire in China[J]. World Forestry Research, 2013, 26(5): 75-80. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201305014
    [104]
    狄丽颖, 张爱国, 张艳丽, 等.山西省森林火灾的年变化特点和致灾原因分析[J].森林防火, 2007(2): 19-22. doi: 10.3969/j.issn.1002-2511.2007.02.008

    DI Liying, ZHANG Aiguo, ZHANG Yanli, et al. Analyses on annual change characteristics and causes of forest fires happened in Shanxi Province[J]. Forest Fire Prevention, 2007(2): 19-22. doi: 10.3969/j.issn.1002-2511.2007.02.008
    [105]
    Gu Y S, Pearsall D M, Xie S C, et al. Vegetation and fire history of a Chinese site in southern tropical Xishuangbanna derived from phytolith and charcoal records from Holocene sediments[J]. Journal of Biogeography, 2008, 35(2): 325-341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2699.2007.01763.x
    [106]
    Vannière B, Blarquez O, Rius D, et al. 7000-year human legacy of elevation-dependent European fire regimes[J]. Quaternary Science Reviews, 2016, 132: 206-212. doi: 10.1016/j.quascirev.2015.11.012
  • Related Articles

    [1]CHEN Yingying, JI Yanyu, ZHAO Lin, SHI Xiaoying, YANG Liwei, DUAN Shijing, CHEN Shiyue. Fire history over the past 1 500 years revealed by charcoal record from the Dongping Lake in the Lower Yellow River[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 33-45. DOI: 10.16562/j.cnki.0256-1492.2024020501
    [2]LIU Jianbo, LI Jianyong, HAN Yueting, YANG Rui, HAN Xiaoxiao, XU Hao. Integrated reconstruction of fire history and climatic changes in Northwest China since mid-late Holocene[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 156-169. DOI: 10.16562/j.cnki.0256-1492.2023022302
    [3]YANG Da, GAO Shu, LI Jia-biao, ZOU Xin-qing, SHENG Hui. Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 54-61. DOI: 10.16562/j.cnki.0256-1492.2020071401
    [4]WANG Mingjian, XIAO Guolin, ZHANG Yong, YANG Yanqiu, YANG Changqing. Cretaceous hydrocarbon accumulation conditions in the southeastern East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 169-176. DOI: 10.16562/j.cnki.0256-1492.2019070303
    [5]LIU Jian, XIE Rui, XU Min, LIN Xiaoyun. Hydrocarbon accumulation model of the Mesozoic in Taibei Depression, western East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 150-158. DOI: 10.16562/j.cnki.0256-1492.2019070307
    [6]HUANG Shengbing, YE Jiaren, ZHU Hongtao, YANG Xianghua, WEI Gang. CHARACTERISTICS OF VALLEY-SLOPE BREAK ZONE IN THE WESTERN CIRCLE OF THE BOZHONG DEPRESSION AND ITS CONTROL OVER RESERVOIR DISTRIBUTION[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 119-124. DOI: 10.3724/SP.J.1140.2011.01119
    [7]WAN Zhifeng, XIA Bin, LIN Ge, LI Junting, LIU Baoming. HYDROCARBON ACCUMULATION MODEL FOR OVERPRESSURE BASIN: AN EXAMPLE FROM THE YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 91-97. DOI: 10.3724/SP.J.1140.2010.06091
    [8]L&#220; Bingquan, CAI Jingong, LIU Feng, SHAO Lei, WANG Honggang, QUAN Songqing. UPWELLING DEPOSITS AT THE MARGINAL SLOPE OF A CARBONATE PLATFORM IN QIXIA STAGE AND ITS RELATION WITH HYDROCARBON SOURCE ROCKS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 109-118. DOI: 10.3724/SP.J.1140.2010.05109
    [9]GUAN Hongxiang, CHEN Duofu, WU Nengyou. DISTRIBUTION AND ORIGIN OF CYCLOALKANE AND MONOCYCLICAROMATIC IN SEEP-CARBONATES FROM LOWER SLOPES OF GULF OF MEXICO[J]. Marine Geology & Quaternary Geology, 2010, 30(3): 113-118. DOI: 10.3724/SP.J.1140.2010.03113
    [10]YUAN Hong-ming, ZHAO Guang-ming, PANG Shou-ji, GAO Guo-yong, YE Si-yuan. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) EXPOSURE AND THEIR SOURCE ANALYSIS IN THE NORTHERN WETLAND OF THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 57-62. DOI: 10.3724/SP.J.1140.2008.06057
  • Cited by

    Periodical cited type(6)

    1. 韩续,索艳慧,李三忠,丁雪松,宋双双,田子晗,付新建. 新近纪以来华北东部古地貌演化数值模拟及陆架海沉降控制. 古地理学报. 2024(01): 192-207 .
    2. 高丹,程日辉,沈艳杰,谭笑,王嘹亮. 北黄海盆地东部坳陷北部物源-沉积体系. 世界地质. 2024(04): 509-516+550 .
    3. 王向东,王任,石万忠,唐大卿,徐立涛,冯芊. 中国东部典型裂谷盆地构造活动特征及演化:以松辽盆地孤店断陷为例. 地质科技通报. 2022(03): 85-95 .
    4. 于海田,许中杰,程日辉,王嘹亮,高丹,胡小强,张振. 北黄海盆地中侏罗世-早白垩世构造体制转换期的古气候演化及元素地球化学响应. 地球科学. 2021(03): 1100-1118 .
    5. 陈书伟,魏文艳,龚胜利,代黎明,杨雄涛,庾永钊,吴杰澎. 北黄海东部坳陷中侏罗世—早白垩世孢粉组合序列. 地层学杂志. 2019(01): 51-62 .
    6. 宫辰,程日辉,沈艳杰,高丹. 北黄海盆地东部坳陷下白垩统砂岩成岩作用及其储层意义. 世界地质. 2018(01): 171-184 .

    Other cited types(2)

Catalog

    Article views (2716) PDF downloads (61) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return