AN Zhenzhen, LI Guangxue, DING Dong, XU Jishang, MA Yanyan, MIN Jianxiong, WANG Liyan, ZHANG Jian. Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 38-51. DOI: 10.16562/j.cnki.0256-1492.2018.02.004
Citation: AN Zhenzhen, LI Guangxue, DING Dong, XU Jishang, MA Yanyan, MIN Jianxiong, WANG Liyan, ZHANG Jian. Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 38-51. DOI: 10.16562/j.cnki.0256-1492.2018.02.004

Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum

More Information
  • Received Date: April 16, 2017
  • Revised Date: May 30, 2017
  • Sediment types, grain size parameters and fragmental minerals of the 356 surface sediment samples from the paleo-gulf located off the northeastern Taiwan and surrounding shelves are studied for dynamic environments and origins. The evolution of the Holocene sedimentary dynamic environments of the gulf could be clearly divided into three phases. During the last glacial maximum (LGM), turbidity currents and landslides dominated the edge of the paleo-gulf (B-3). A great amount of terrigenous sediments rapidly poured into the Gulf. Seabed and underlying strata were eroded and two gravel belts formed as turbidity channels, and left behind poorly-sorted and inadequately reworked sediments. Tides, waves and cross-shelf currents, especially strengthened by the East Asian Winter Monsoon (EAWM), severely washed and eroded the edge and mouthof the B-3, where formed the sediments with high contents of sand and quartz, quartz/feldspar ratios, and little biodetritus; During the last deglaciation, owing to the periodic sea-level rises and significant coast retreat, turbidity currents weakened, and tidal currents became the major dynamic force on the shelf. Tidal bottom stress reworked the shelf sediments. Differences in sediment compositions, types, contents of quartz, feldspar, lithic fragments and biodetritus, quartz/feldspar ratios between(B-2)the western shelf pebbly-gravelly sand area (B-1) and the northern shelf pebbly sand-pebbly muddy sand area (B-2) reflect the difference in sea bottom topography which control the strength of tides and waves in addition to the speed of horizontal transgression; In the subsequent highstand period, the influence of Kurosio Current (KC) in the study area was increased. In addition to seafloor erosion, its bottom current also hindered the deposition of modern terrestrial sediments, and thus left behind coarse sediments in B. The deposition of fine-grained sediments was partly attributed to the weakening of the bottom current in A as well as local tides and waves. For the origin of the paleo-gulf, turbidity currents of the LGM certainly played an important role. They eroded the bottom deposits and strata, deepened the depressed geomorphology under the influence of the previous NW-trending fault activity; Moreover, strong hydrodynamics such as tide-wave system, the KC of subsequent periods prevented fine-grained sediments deposition in the B-3, and finally retained its depressed geomorphology.
  • [1]
    Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690
    [2]
    Liu X T, Rendle-Bühring R, Henrich R. Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene[J]. Quaternary Science Reviews, 2016, 133: 15-27. doi: 10.1016/j.quascirev.2015.12.002
    [3]
    Lee H J, Chough S K, Yoon S H. Slope-stability change from late pleistocene to holocene in the Ulleung Basin, East Sea (Japan Sea)[J]. Sedimentary Geology, 1996, 104(1-4): 39-51. doi: 10.1016/0037-0738(95)00119-0
    [4]
    Jorry S J, Droxler A W, Mallarino G, et al. Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S19.
    [5]
    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007
    [6]
    Niino H, Emery K O. Sediments of shallow portions of East China Sea and South China Sea[J]. Geological Society of America Bulletin, 1961, 72(5): 731-762. doi: 10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2
    [7]
    Emery K O. Relict sediments on continental shelves of world[J]. AAPG Bulletin, 1968, 52(3): 445-464.
    [8]
    Zhao R B, Sun H T, Wu Y S, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 822-828.
    [9]
    Dennielou B, Jallet L, Sultan N, et al. Post-glacial persistence of turbiditic activity within the Rhne deep-sea turbidite system (Gulf of Lions, Western Mediterranean): Linking the outer shelf and the basin sedimentary records[J]. Marine Geology, 2009, 257(1-4): 65-86. doi: 10.1016/j.margeo.2008.10.013
    [10]
    Ribó M, Puig P, Urgeles R, et al. Spatio-temporal evolution of sediment waves developed on the Gulf of Valencia margin (NW Mediterranean) during the Plio-Quaternary[J]. Marine Geology, 2016, 378: 276-291. doi: 10.1016/j.margeo.2015.11.011
    [11]
    Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1-4): 217-232. doi: 10.1016/S0037-0738(98)00107-9
    [12]
    Ujiié H, Hatakeyama Y, Gu X X, et al. Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165(1-2): 129-140. doi: 10.1016/S0031-0182(00)00157-7
    [13]
    Xu Z K, Li T G, Chang F Q, et al. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: rare earth elements evidence[J]. Journal of Rare Earths, 2012, 30(11): 1184-1190. doi: 10.1016/S1002-0721(12)60202-6
    [14]
    Youn J, Kim T J. Geochemical composition and provenance of muddy shelf deposits in the East China Sea[J]. Quaternary International, 2011, 230(1-2): 3-12. doi: 10.1016/j.quaint.2009.11.001
    [15]
    Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002
    [16]
    Dou Y Y, Yang S Y, Liu Z X, et al. Clay mineral evolution in the central Okinawa Trough since 28ka: Implications for sediment provenance and paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 288(1-4): 108-117. doi: 10.1016/j.palaeo.2010.01.040
    [17]
    Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017
    [18]
    Xu G, Liu J, Pei S F, et al. Sources and geochemical background of potentially toxic metals in surface sediments from the Zhejiang coastal mud area of the East China Sea[J]. Journal of Geochemical Exploration, 2016, 168: 26-35. doi: 10.1016/j.gexplo.2016.06.003
    [19]
    Lin H, Lu G N, Song Z Y, et al. Modeling the tide system of the East China Sea with GIS[J]. Marine Geodesy, 1999, 22(2): 115-128. doi: 10.1080/014904199273533
    [20]
    闾国年, 林珲, 宋志尧, 等.末次冰期最盛时期以来中国东部边缘海潮波系统演变过程的模拟研究[J].海洋地质与第四纪地质, 2000, 20(4): 1-7. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200004001

    LV Guonian, LIN Hui, SONG Zhiyao, et al. Modeling of the tide wave system changes in the marginal seas adjacent to eastern China since the last full glacial period[J]. Marine Geology & Quaternary Geology, 2000, 20(4): 1-7. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200004001
    [21]
    Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology[J]. Sedimentary Geology, 2003, 162(1-2): 25-38. doi: 10.1016/S0037-0738(03)00234-3
    [22]
    Chen Q Q, Zhu Y R. Holocene evolution of bottom sediment distribution on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Sedimentary Geology, 2012, 273-274: 58-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28769bc40e94cd726baf2020bc63e97d
    [23]
    李家彪.东海区域地质[M].海洋出版社, 2008.

    LI Jiabiao. The Regional Geology of the East China Sea[M]. China Ocean Press, 2008.
    [24]
    Hsu S K, Sibuet J C, Shyu C T. Magnetic inversion in the East China Sea and Okinawa Trough: tectonic implications[J]. Tectonophysics, 2001, 333(1-2): 111-122. doi: 10.1016/S0040-1951(00)00270-5
    [25]
    王舒畋, 李斌.东海新构造与新构造运动[J].海洋地质与第四纪地质, 2010, 30(4): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzdz201403012

    WANG Shutian, LI Bin. Neotectonic features and movement in the East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzdz201403012
    [26]
    Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean[J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9
    [27]
    余华, 刘振夏, 熊应乾, 等.末次盛冰期以来东海陆架南部EA05岩心地层划分及其古环境意义[J].中国海洋大学学报:自然科学版, 2006, 36(4): 545-550. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200604006

    YU Hua, LIU Zhenxia, XIONG Yingqian, et al. Stratigraphy of Core EA05 from southern East China Sea Continental Shelf since the last glacial maximum and its paleo-environment implication[J]. Periodical of Ocean University of China, 2006, 36(4): 545-550. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200604006
    [28]
    Lin X T, Li W R, Du S J, et al. Heavy mineral stratigraphy of sediments from the southern outer shelf of the East China Sea since the last glaciation using fuzzy C-means cluster method[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(1): 183-189. doi: 10.1007/s00343-010-9292-y
    [29]
    Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603
    [30]
    Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation: Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016
    [31]
    Hsueh Y. The Kuroshio in the East China Sea[J]. Journal of Marine Systems, 2000, 24(1-2): 131-139. doi: 10.1016/S0924-7963(99)00083-4
    [32]
    Hsu S C, Lin F J, Jeng W L, et al. The effect of a cyclonic eddy on the distribution of lithogenic particles in the southern East China Sea[J]. Journal of Marine Research, 1998, 56(4): 813-832. doi: 10.1357/002224098321667387
    [33]
    Lee S, Y Huh C A, Su C C, et al. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1769-1780. doi: 10.1016/j.dsr.2004.07.008
    [34]
    Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001
    [35]
    Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera[J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8
    [36]
    Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6
    [37]
    Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7
    [38]
    Xu X D, Yamasaki M, Oda M, et al. Comparison of seasonal flux variations of planktonic foraminifera in sediment traps on both sides of the Ryukyu Islands, Japan[J]. Marine Micropaleontology, 2005, 58(1): 45-55. doi: 10.1016/j.marmicro.2005.09.002
    [39]
    Ijiri A, Wang L J, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4): 239-261. doi: 10.1016/j.palaeo.2004.12.028
    [40]
    Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211
    [41]
    刘勇.中国东部海域海底沉积物成因环境图[M].北京:科学出版社, 2005.

    LI Guangxue, YANG Zigeng, LIU Yong. Formation Environment of the Seafloor Sediment in the East China Seas[J]. Beijing: Science Press, 2005.
    [42]
    王先兰, 马克俭, 陈建林, 等.东海碎屑矿物特征的研究[J].中国科学: B辑, 1985, 15(5): 474-482. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605009

    WANG Xianlan, MA Kejian, CHEN Jianlin, et al. Detrital minerals in the surface sediments of East China Sea Shelf and thier geological significance[J]. Science of China (Series B), 1985, 15(5): 474-482. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605009
    [43]
    Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the middle Okinawa Trough during late Quaternary paleoenvironmental change[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005
    [44]
    李西双, 刘保华, 吴金龙, 等.冲绳海槽西部陆坡地震相模式与沉积体系[J].海洋与湖沼, 2004, 35(2): 120-129. doi: 10.3321/j.issn:0029-814X.2004.02.003

    LI Xishuang, LIU Baohua, WU Jinlong, et al. Seismic reflection facies and deposit systems in the west slope of the Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 120-129. doi: 10.3321/j.issn:0029-814X.2004.02.003
    [45]
    Dou Y G, Yang S Y, Liu Z X, et al. Sr-Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003
    [46]
    Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029
    [47]
    Wei K Y. Environmental changes during the late quaternary in Taiwan and adjacent seas: an overview of recent results of the past decade[J]. Western Pacific Earth Sciences, 2002, 2(2): 149-160.
    [48]
    Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100000 years: Okinawa Trough evidence (MD012404)[J]. Paleoceanography and Paleoclimatology, 2009, 24(3): PA3208.
    [49]
    Huh C A, Su C C, Liang W T, et al. Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes[J]. Geophysical Research Letters, 2004, 31(12): L12304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2004GL019731
    [50]
    Liu Z X, Berné S, Saito Y, et al. Internal architecture and mobility of tidal sand ridges in the East China Sea[J]. Continental Shelf Research, 2007, 27(13): 1820-1834. doi: 10.1016/j.csr.2007.03.002
    [51]
    Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea[J]. Journal of Sedimentary Research, 2003, 73(6): 926-940. doi: 10.1306/041603730926
    [52]
    Clark P U, Mccabe A M, Mix A C, et al. Rapid rise of sea level 19, 000 years ago and its global implications[J]. Science, 2004, 304(5674): 1141-1144. doi: 10.1126/science.1094449
    [53]
    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111
    [54]
    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
    [55]
    Katsuto U. Tidal changes in the Yellow/East China Sea caused by the rapid sea-level rise during the Holocene[J]. Science in China Series B: Chemistry, 2001, 44(S1): 126-134. doi: 10.1007/BF02884818
    [56]
    Berné S, Vagner P, Guichard F, et al. Pleistocene forced regressions and tidal sand ridges in the East China Sea[J]. Marine Geology, 2002, 188(3-4): 293-315. doi: 10.1016/S0025-3227(02)00446-2
    [57]
    Liu Z X, Berne S, Saito Y, et al. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea[J]. Journal of Asian Earth Sciences, 2000, 18(4): 441-452. doi: 10.1016/S1367-9120(99)00077-2
    [58]
    Fairbanks R G. A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342(6250): 637-642. doi: 10.1038/342637a0
    [59]
    Steinke S, Hanebuth T J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17, 000 yr[J]. Marine Geology, 2008, 250(3-4): 199-210. doi: 10.1016/j.margeo.2008.01.005
    [60]
    Oguri K, Matsumoto E, Saito Y, et al. Evidence for the offshore transport of terrestrial organic matter due to the rise of sea level: the case of the East China Sea continental shelf[J]. Geophysical Research Letters, 2000, 27(23): 3893-3896. doi: 10.1029/2000GL011690
    [61]
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
    [62]
    Tang T Y, Tai J H, Yang Y J. The flow pattern north of Taiwan and the migration of the Kuroshio[J]. Continental Shelf Research, 2000, 20(4-5): 349-371. doi: 10.1016/S0278-4343(99)00076-X
    [63]
    鲍献文, 林霄沛, 吴德星, 等.东海陆架环流季节变化的模拟与分析[J].中国海洋大学学报:自然科学版, 2005, 35(3): 349-356. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200503001

    BAO Xianwen, LIN Xiaopei, WU Dengxing, et al. Simulation and analysis of shelf circulation and its seasonal variability in the east China Sea[J]. Periodical of Ocean University of China, 2005, 35(3): 349-356. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200503001
    [64]
    Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C0515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010JC006777
    [65]
    Su C C, Huh C A. 210 Pb, 137 Cs and 239, 240 Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides[J]. Marine Geology, 2002, 183(1-4): 163-178. doi: 10.1016/S0025-3227(02)00165-2
    [66]
    Gungor A, Lee G H, Kim H J, et al. Structural characteristics of the northern Okinawa Trough and adjacent areas from regional seismic reflection data: geologic and tectonic implications[J]. Tectonophysics, 2012, 522-523: 198-207. doi: 10.1016/j.tecto.2011.11.027
  • Related Articles

    [1]NING Ze, XU Lei, LIN Xuehui, MI Beibei, CONG Jingyi, ZHANG Yong, BI Shipu. Distribution and provenance of detrital minerals in surface sediments of the northeastern East China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 58-69. DOI: 10.16562/j.cnki.0256-1492.2022062301
    [2]SUN Jing, YANG Changqing, XU Liming, WANG Jianqiang. Paleo-environment of the Late Triassic-Early Jurassic in the land area next to the southern East China Sea Shelf[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 81-92. DOI: 10.16562/j.cnki.0256-1492.2019072501
    [3]DUAN Xiaoyong, YIN Ping, LIU Jinqing, CAO Ke, GAO Fei, CHEN Xiaoying. Modern sedimentation environments in the coastal zone of East China[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 14-20. DOI: 10.16562/j.cnki.0256-1492.2018030501
    [4]RAN Weimin, LUAN Xiwu, SHAO Zhufu, LIU Hong, LI Deyong, ZHAO Yang, WANG Huidong, YAN Zhonghui. Research on characteristics of growth faults in the southern East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 100-112. DOI: 10.16562/j.cnki.0256-1492.2017052501
    [5]CUI Zhengke, YANG Wenda. LATE QUATERNARY SEQUENCE STRATIGRAPHY AND SEDIMENTARY ENVIRONMENT OF EAST CHINA SEA CONTINENTAL SHELF[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 1-10. DOI: 10.3724/SP.J.1140.2014.04001
    [6]WANG Wenjuan, LI Gang, YANG Changqing, YANG Chuansheng. CHARACTRISTICS OF SESMIC SEQUENCES IN THE EAST CHINA SEA SHELF BASIN AND THEIR GEOLOGICAL ATTRIBUTES[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 117-122. DOI: 10.3724/SP.J.1140.2013.03117
    [7]YANG Yanqiu, YANG Changqing, LI Gang, GONG Jianming. STRUCTURAL STYLES AND THEIR DISTRIBUTION PATTERN IN THE SOUTHERN EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 113-118. DOI: 10.3724/SP.J.1140.2012.03113
    [8]SUO Yanhui, LI Sanzhong, DAI Liming, ZHOU Juntai, ZHAO Fengmei, JIAO Qian, WU Qi, ZHANG Jianpei, XU Lei. DIVISION AND CHARACTERISTICS OF TECTONIC UNITS OF THE EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 49-58. DOI: 10.3724/SP.J.1140.2010.06049
    [9]LIU Shengfa, SHI Xuefa, LIU Yanguang, ZHU Aimei, YANG Gang. SEDIMENTATION RATE OF MUD AREA IN THE EAST CHINA SEA INNER CONTINENTAL SHELF[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 1-7. DOI: 10.3724/SP.J.1140.2009.06001
    [10]DU Wen-bo, YE Yin-can, ZHUANG Zhen-ye. SEDIMENTARY ENVIRONMENT ANALYSIS OF ANCIENT SAND RIDGES FROM ZK23 HOLE IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 11-16.

Catalog

    Article views (2880) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return