ZHANG Weiyan, YU Xiaoguo, WANG Weiguo, LIU Yanguang, YE Liming, BIAN Yeping, XU Dong, YANG Haili, YAO Xuying. Records of organic carbon and total nitrogen for environmental changes in the Chukchi Sea during the past 100 years[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 13-24. DOI: 10.16562/j.cnki.0256-1492.2018.02.002
Citation: ZHANG Weiyan, YU Xiaoguo, WANG Weiguo, LIU Yanguang, YE Liming, BIAN Yeping, XU Dong, YANG Haili, YAO Xuying. Records of organic carbon and total nitrogen for environmental changes in the Chukchi Sea during the past 100 years[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 13-24. DOI: 10.16562/j.cnki.0256-1492.2018.02.002

Records of organic carbon and total nitrogen for environmental changes in the Chukchi Sea during the past 100 years

More Information
  • Received Date: June 20, 2016
  • Revised Date: January 14, 2017
  • Five multicores were taken from the Chuckchi Sea Shelf, Chuckchi Sea Plateau and Chuckchi Sea Basin during the fifth Chinese National Arctic Research Expedition in 2012 and the sixth Chinese National Arctic Research Expedition in 2014. All samples were analyzed for 210Pb, grain size, organic carbon (OC) concentration and total nitrogen (TN) content as well as stable the isotopes of organic carbon (δ13C) and nitrogen (δ15N). The sedimentation rates of the 5 multicores are 0.19~0.41cm/a in the shelf area, and 0.03~0.04cm/a on the Plateau and in the Basin area. The OC and TN contents are 1.21%~1.62% and 0.17%~0.21% respectively, while the δ13C and δ15N are -22.30‰~-22.25‰PDB and 7.24‰~8.12‰ in the Shelf area during the past 100 years. The OC and TN content are 0.80%~1.26% and 0.13%~0.16% respectively, while the δ13C and δ15N are -22.52‰~-22.07‰PDB and 7.38‰~7.81‰ on the Plateau and in the Basin area during the same period. The OC and TN content as well as the sedimentation rate are higher in the Shelf area than those in the Plateau and Basin. The sediments are coarser in the shelf area than those in the Plateau and Basin area. The OC is mainly from the marine input, suggesting that the Arctic Ocean was warmer and productivity higher in the past 100 years.
  • [1]
    Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979-2010[J]. The Cryosphere, 2012, 6(4): 881-889. doi: 10.5194/tc-6-881-2012
    [2]
    Springer A M, McRoy C P. The paradox of pelagic food webs in the northern Bering Sea—Ⅲ. Patterns of primary production[J]. Continental Shelf Research, 1993, 13(5-6): 575-599. doi: 10.1016/0278-4343(93)90095-F
    [3]
    Walsh J J, McRoy C P, Coachman L K, et al. Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean[J]. Progress in Oceanography, 1989, 22(4): 277-359. doi: 10.1016/0079-6611(89)90006-2
    [4]
    Sellén E. Quaternary paleoceanography of the Arctic Ocean: A study of sediment stratigraphy and physical properties [D]. Doctor Dissertation of Stockholm University, 2009: 1-43.
    [5]
    Stein R. The great challenges in Arctic Ocean paleoceanography[J]. IOP Conference Series: Earth and Environmental Science, IOP Publshing Ltd, 2011, 14(1): 012001.
    [6]
    Morris D J, O'Connell M T, Macko S A. Assessing the importance of terrestrial organic carbon in the Chukchi and Beaufort seas[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 28-38. doi: 10.1016/j.ecss.2015.06.011
    [7]
    陈建芳, 金海燕, 李宏亮, 等.北极快速变化对北冰洋碳汇机制和过程的影响[J].科学通报, 2015, 60(35): 3406-3416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201535002

    CHEN Jianfang, JIN Haiyan, LI Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under arctic rapid change[J]. Chinese Science Bulletin, 2015, 60(35): 3406-3416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201535002
    [8]
    陈志华, 石学法, 蔡德陵, 等.北冰洋西部沉积物有机碳、氮同位素特征及其环境指示意义[J].海洋学报, 2006, 28(6): 61-71. doi: 10.3321/j.issn:0253-4193.2006.06.009

    CHEN Zhihua, SHI Xuefa, CAI Deling, et al. Organic carbon and nitrogen isotopes in surface sediments from the western Arctic Ocean and their implications for sedimentary environments[J]. Acta Oceanologica Sinica, 2006, 28(6): 61-71. doi: 10.3321/j.issn:0253-4193.2006.06.009
    [9]
    李宏亮, 陈建芳, 金海燕, 等.楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义[J].海洋学报, 2008, 30(1): 165-171. doi: 10.3321/j.issn:0253-4193.2008.01.023

    LI Hongliang, CHEN Jianfang, JIN Haiyan, et al. Biogenic constituents of surface sediments in the Chukchi Sea: implications for organic carbon burying efficiency[J]. Acta Oceanologica Sinica, 2008, 30(1): 165-171. doi: 10.3321/j.issn:0253-4193.2008.01.023
    [10]
    于晓果, 雷吉江, 姚旭莹, 等.楚科奇海表层海水颗粒物组成与来源[J].极地研究, 2014, 26(1): 89-97. http://d.old.wanfangdata.com.cn/Periodical/jdyj201401010

    YU Xiaoguo, LEI Jijiang, YAO Xuying, et al. The composition and sources of suspended particles of in the Chukchi Sea and the central arctic ocean[J]. Chinese Journal of Polar Research, 2014, 26(1): 89-97. http://d.old.wanfangdata.com.cn/Periodical/jdyj201401010
    [11]
    孙烨忱, 王汝建, 肖文申, 等.西北冰洋表层沉积物中生源和陆源粗组分及其沉积环境[J].海洋学报, 2011, 33(2): 104-114. http://d.old.wanfangdata.com.cn/Periodical/hyxb201102013

    SUN Yechen, WANG Rujian, XIAO Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Acta Oceanologica Sinica, 2011, 33(2): 104-114. http://d.old.wanfangdata.com.cn/Periodical/hyxb201102013
    [12]
    余雯, 何建华, 李奕良, 等.基于210Pb测年法的楚科奇海陆架北缘有机碳沉积通量研究[J].极地研究, 2012, 24(4): 391-396. http://d.old.wanfangdata.com.cn/Periodical/jdyj201204009

    YU Wen, HE Jianhua, LI Yiliang, et al. 210Pb-derived organic carbon deposition flux on the north Chukchi shelf[J]. Chinese Journal of Polar Research, 2012, 24(4): 391-396. http://d.old.wanfangdata.com.cn/Periodical/jdyj201204009
    [13]
    杨伟锋, 陈敏, 刘广山, 等.楚克奇海陆架区沉积物中核素的分布及其对沉积环境的示踪[J].自然科学进展, 2002, 12(5): 515-518. doi: 10.3321/j.issn:1002-008X.2002.05.012

    YANG Weifeng, CHEN Min, LIU Guangshan, et al. Distribution of the radionuclides in sediments from the Chukchi Sea shelf and its implication for the deposition regime[J]. Progress in Natural Science, 2002, 12(5): 515-518. doi: 10.3321/j.issn:1002-008X.2002.05.012
    [14]
    马豪, 曾实, 陈立奇, 等.楚科奇海陆架重金属沉积研究[J].台湾海峡, 2008, 27(1): 15-20. doi: 10.3969/j.issn.1000-8160.2008.01.003

    MA Hao, ZENG Shi, CHEN Liqi, et al. History of heavy metals recorded in the sediment of the Chukchi Sea, Arctic[J]. Journal of Oceanography in Taiwan Strait, 2008, 27(1): 15-20. doi: 10.3969/j.issn.1000-8160.2008.01.003
    [15]
    Huh C A, Pisias N G, Kelley J M, et al. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: sedimentation rates and pathways of radionuclides[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(8): 1725-1727, 1729-1743. doi: 10.1016/S0967-0645(97)00040-4
    [16]
    夏小明, 杨辉, 李炎, 等.长江口-杭州湾毗连海区的现代沉积速率[J].沉积学报, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020

    XIA Xiaoming, YANG Hui, LI Yan, et al. Modern sedimentation rates in the contiguous sea area of Changjiang estuary and Hangzhou bay[J]. Acta Sedimentologica Sinica, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020
    [17]
    Teeri J A, Stowe L G. Climatic patterns and the distribution of C4 grasses in North America[J]. Oecologia, 1976, 23(1): 1-12. doi: 10.1007/BF00351210
    [18]
    Rachold V, Hubberten H W. Carbon isotope composition of particulate organic material in East Siberian rivers[M]//Kassens H, ed. Land-Ocean Systems in the Siberian Arctic. Berlin Heidelberg: Springer, 1999: 223-238.
    [19]
    Guo L D, Macdonald R W. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases, Global Biogeochem[J]. Cycles, 2006, 20(2): GB2011, doi: 10.1029/2005GB002593.
    [20]
    Goñi M A, Yunker M B, Macdonald R W, et al. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf[J]. Marine Chemistry, 2000, 71(1-2): 23-51. doi: 10.1016/S0304-4203(00)00037-2
    [21]
    Naidu A S, Cooper L W, Finney B P, et al. Organic carbon isotope ratios (δ13C) of Arctic Amerasian continental shelf sediments[J]. International Journal of Earth Sciences, 2000, 89(3): 522-532. doi: 10.1007/s005310000121
    [22]
    Rau G H, Sweeney R E, Kaplan I R. Plankton 13C: 12C ratio changes with latitude: differences between northern and southern oceans[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1982, 29(8): 1035-1039. doi: 10.1016/0198-0149(82)90026-7
    [23]
    Rau G H, Takahashi T, Des Marais D J. Latitudinal variations in plankton delta d13C: implications for CO2 and productivity in past oceans[J]. Nature, 1989, 341(6242): 516-518. doi: 10.1038/341516a0
    [24]
    Rau G H, Sullivan C W, Gordon L I. δ13C and δ15N variations in Weddell Sea particulate organic matter[J]. Marine Chemistry, 1991, 35(1-4): 355-369. doi: 10.1016/S0304-4203(09)90028-7
    [25]
    Goericke R, Fry B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean[J]. Global Biogeochemical Cycles, 1994, 8(1): 85-90. doi: 10.1029/93GB03272
    [26]
    Gibson J A E, Trull T, Nichols P D, et al. Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: A potential indicator of past sea-ice extent[J]. Geology, 1999, 27(4): 331-334. doi: 10.1130/0091-7613(1999)027<0331:SOCROM>2.3.CO;2
    [27]
    Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(3): 789-810. doi: 10.1016/S0967-0637(00)00069-8
    [28]
    Goñi M A, Yunker M B, Macdonald R W, et al. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean[J]. Marine Chemistry, 2005, 93(1): 53-73. doi: 10.1016/j.marchem.2004.08.001
    [29]
    Fernandes M B, Sicre M A. The importance of terrestrial organic carbon inputs on Kara Sea shelves as revealed by n-alkanes, OC and δ13C values[J]. Organic Geochemistry, 2000, 31(5): 363-374. doi: 10.1016/S0146-6380(00)00006-1
    [30]
    Drenzek N J, Montlucon D B, Yunker M B, et al. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements[J]. Marine Chemistry, 2007, 103(1-2): 146-162. doi: 10.1016/j.marchem.2006.06.017
    [31]
    蔡德陵, 孙耀, 张小勇, 等.由东海、黄海沉积物中有机碳含量及稳定同位素组成重建200a以来初级生产力历史记录[J].海洋学报, 2014, 36(2): 40-50. doi: 10.3969/j.issn.0253-4193.2014.02.005

    CAI Deling, SUN Yao, ZHANG Xiaoyong, et al. Reconstructing a primary productivity history over the past 200a using sediment organic carbon content the stable isotope composition from the East China Sea and the Yellow Sea[J]. Acta Oceanologica Sinica, 2014, 36(2): 40-50. doi: 10.3969/j.issn.0253-4193.2014.02.005
    [32]
    Naidu A S, Scalan R S, Feder H M, et al. Stable organic carbon isotopes in sediments of the north Bering-South Chukchi seas, Alaskan-Soviet Arctic shelf[J]. Continental Shelf Research, 1993, 13(5-6): 669-691. doi: 10.1016/0278-4343(93)90099-J
    [33]
    HOEFS J. Stable Isotope Geochemistry[M].Berlin Heidelberg:Springer Science & Businese Media, 2013.
    [34]
    蔡德陵, 张淑芳, 张经.稳定碳、氮同位素在生态系统研究中的应用[J].青岛海洋大学学报, 2002, 32(2): 287-295. doi: 10.3969/j.issn.1672-5174.2002.02.026

    CAI Deling, ZHANG Shufang, ZHANG Jing. Applications of stable carbon and nitrogen isotope methods in ecological studies[J]. Journal of Ocean University of Qingdao, 2002, 32(2): 287-295. doi: 10.3969/j.issn.1672-5174.2002.02.026
    [35]
    吴莹, 张经, 张再峰, 等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼, 2002, 33(5): 546-552. doi: 10.3321/j.issn:0029-814X.2002.05.012

    WU Ying, ZHANG Jing, ZHANG Zaifeng, et al. Seasonal variability of stable carbon and nitrogen isotope of suspended particulate matter in the Changjiang river[J]. Oceanologia et Limnologia Sinica, 2002, 33(5): 546-552. doi: 10.3321/j.issn:0029-814X.2002.05.012
    [36]
    Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River[J]. Limnology and Oceanography, 1986, 31(4): 717-738. doi: 10.4319/lo.1986.31.4.0717
    [37]
    Stevenson F J, Cheng C N. Organic geochemistry of the Argentine Basin sediments: carbon-nitrogen relationships and Quaternary correlations[J]. Geochimica et Cosmochimica Acta, 1972, 36(6): 653-671. doi: 10.1016/0016-7037(72)90109-3
    [38]
    Müller P J. C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds absorbed by clays[J]. Geochimica et Cosmochimica Acta, 1977, 41(6): 765-776. doi: 10.1016/0016-7037(77)90047-3
    [39]
    张德玉, 高爱国, 张道建.北冰洋加拿大海盆黏土矿物的分布特征[M]//张占海主编.快速变化中的北极海洋环境.北京: 科学出版社, 2011; 358-370.

    ZHANG Deyu, GAO Aiguo, ZHANG Daojian. Distribution of clay minerals in the Canada Basin, Arctic Ocean [M]//ZHANG Zhanhai, Ed. Rapid Changes in the Marine Environment, Arctic Ocean. Beijing: Science Press, 2011: 358-370.
    [40]
    章伟艳, 于晓果, 刘焱光, 等.楚科奇海盆M04柱晚更新世以来沉积古环境记录[J].海洋学报, 2015, 37(7): 85-96. doi: 10.3969/j.issn.0253-4193.2015.07.009

    ZHANG Weiyan, YU Xiaoguo, LIU Yanguang, et al. Paleoenvironmental record of core M04 in the Chukchi Sea Basin during Late Pleistocene[J]. Haiyang Xuebao, 2015, 37(7): 85-96. doi: 10.3969/j.issn.0253-4193.2015.07.009
    [41]
    章伟艳, 于晓果, 刘焱光, 等.楚科奇海陆坡ARC5-M06柱样晚更新世以来黏土矿物组成变化的古环境意义[J].海洋地质与第四纪地质, 2015, 35(3): 83-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201503011

    ZHANG Weiyan, YU Xiaoguo, LIU Yanguang, et al. Paleoenvironmental Significance of clay mineral assemblages of core Arc5-M06 on the Chukchi Sea continental slope since late Pleistocene[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 83-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201503011
    [42]
    Ruttenberg K C, Goñi M A. Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter[J]. Marine Geology, 1997, 139(1-4): 123-145. doi: 10.1016/S0025-3227(96)00107-7
    [43]
    [44]
    Sharma G D. Contemporary epicontinental sedimentation and shelf grading in the southeast Bering Sea[J]. Geological Society of America Special Papers, 1975, 151: 33-48.
    [45]
    Shuert P G, Walsh J J. A coupled physical-biological model of the Bering-Chukchi seas[J]. Continental Shelf Research, 1993, 13(5-6): 543-573. doi: 10.1016/0278-4343(93)90094-E
    [46]
    Henriksen K, Blackburn T H, Lomstein B A, et al. Rates of nitrification, distribution of nitrifying bacteria and inorganic N fluxes in northern Bering-Chukchi shelf sediments[J]. Continental Shelf Research, 1993, 13(5-6): 629-651. doi: 10.1016/0278-4343(93)90097-H
    [47]
    Hill V, Cota G, Stockwell D. Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24-26): 3369-3385. doi: 10.1016/j.dsr2.2005.10.010
    [48]
    Pejrup M. The triangular diagram used for classification of estuarine sediments: a new approach[C]//De Boer P L, ed. Tide-Influenced Sedimentary Environments and Facies. Dordrecht: D. Reidel, 1987: 289-300.
  • Related Articles

    [1]LU Yamin, SU Kefan, FU Fanfei, HUANG Baoqi, LIU Lejun, WANG Na. X-ray CT scanning technique and its application to the Core 01 in the northern South China Sea for sedimentary environment reconstruction[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 215-221. DOI: 10.16562/j.cnki.0256-1492.2020110901
    [2]WANG Linmiao, LI Guangxue. HIGH-RESOLUTION SEDIMENTARY RECORDS OF THE MUDDY AREA IN THE SOUTH YELLOW SEA AND EAST CHINA SEA: A REVIEW OF NEW PROGRESS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 167-174. DOI: 10.3724/SP.J.1140.2014.03167
    [3]XU Taoyu, SHI Xuefa, LIU Shengfa, QIAO Shuqing, YANG Gang, WANG Guoqing, WANG Kunshan, WANG Xuchen. THE COLOR REFLECTANCE FEATURES OF THE SEDIMENTS IN MUD AREA ON THE INNER SHELF OF THE EAST CHINA SEA AND ITS PALEOCLIMATIC IMPLICATIONS FOR RECENT 2 ka[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 149-158. DOI: 10.3724/SP.J.1140.2012.06149
    [4]LI Xiaoyan, JIAN Zhimin, SHI Xuefa, LIU Shengfa. HOLOCENE FORAMINIFERA FROM THE MUD AREA OF THE INNER SHELF,EAST CHINA SEA AND THEIR PALEOENVIRONMENTAL SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 61-71. DOI: 10.3724/SP.J.1140.2012.04061
    [5]ZHU Aimei, LIU Jihua, ZHANG Hui, BAI Yazhi, CUI Jingjing, LIU Shengfa. DISTRIBUTION PATTERN OF REES IN THE INNER-SHELF MUD AREA OF EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 1-10. DOI: 10.3724/SP.J.1140.2012.01001
    [6]SHI Xuefa, LIU Shengfa, QIAO Shuqing, LIU Yanguang, FANG Xisheng, WU Yonghua, ZhU Zhiwei. DEPOSITIONAL FEATURES ANG PALAEOENVIRONMENTAL RECORDS OF THE MUD DEPOSITS IN MIN-ZHE COASTAL MUD AREA,EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 19-30. DOI: 10.3724/SP.J.1140.2010.04019
    [7]LIU Shengfa, SHI Xuefa, LIU Yanguang, ZHU Aimei, YANG Gang. SEDIMENTATION RATE OF MUD AREA IN THE EAST CHINA SEA INNER CONTINENTAL SHELF[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 1-7. DOI: 10.3724/SP.J.1140.2009.06001
    [8]ZHAO Quanhong, JIAN Zhimin, ZHANG Zaixiu, CHENG Xinrong, WANG Ke, ZHENG Hongbo. HOLOCENE PALEOENVIRONMENTAL CHANGES OF THE INNER-SHELF MUD AREA OF THE EAST CHINA SEA: EVIDENCE FROM FORAMINIFERAL FAUNAS[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 75-82. DOI: 10.3724/SP.J.1140.2009.02075
    [9]REN Hui-ru, KANG Jian-cheng, WANG Tian-tian, AN Yan. SPATIAL DISTRIBUTION OF WARM CORE OF KUROSHIO IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 77-84.
    [10]SUN Xiao-yan, LI Guang-xue, LIU Yong, MA Yan-yan, LI Jun-jie. RESPONSE OF ENVIRONMENTAL SENSITIVE GRAIN SIZE GROUP IN CORE FJ04 FROM MUD AREA IN THE NORTH OF EAST CHINA SEA TO EAST ASIAN WINTER MONSOON EVOLVEMENT[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 11-17. DOI: 10.3724/SP.J.1140.2008.03011

Catalog

    Article views (3099) PDF downloads (43) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return