LIU Wei, FAN Daidu, TU Junbiao, LU Jun. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51. DOI: 10.16562/j.cnki.0256-1492.2018.01.005
Citation: LIU Wei, FAN Daidu, TU Junbiao, LU Jun. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51. DOI: 10.16562/j.cnki.0256-1492.2018.01.005

Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring

More Information
  • Received Date: May 30, 2017
  • Revised Date: December 19, 2017
  • A detailed study on hydrodynamic characteristics and transportation mechanisms of suspended sediment at two specific sites of the Jiaojiang Estuary were conducted in March, 2017.The data resulted from the observation at anchor stations show that the Jiaojiang Estuary is characterized by a bidirectional field of currents, and the tidal currents at the stations within the river mouth are obviously stronger than that at the sites located outside the river mouth. The depth-mean SSCs at the two stations are 0.3~5.8 kg/m3, and 0.3~1.0 kg/m3, respectively. The results of mechanism decomposition of sediment transport indicate that at the upstream site, the dominant mechanism of transporting suspended sediment is the seaward tidal pumping, which contributes 49.3% of the total absolute sediment flux, followed by the landward advection and the vertical net circulation. As the result, the net suspended sediment transport is 0.39 kg/(m·s) landward. However, the sediments fluxes at the downstream station are dominated by the seaward advection, with 72.6% of contribution, and the net suspended sediment transport is 0.10 kg/(m·s) seaward. The three-layers wavelet analysis and spectral analysis suggest that there are somewhat coupling response relations between the SSC and the sediment transport rate and flow velocity. The sediment transport rate is dominated by the flow velocity at the outer site of the estuary, and SSCs at the site inside.
  • [1]
    De Nijs M A J, Winterwerp J C, Pietrzak J D. On harbour siltation in the fresh-salt water mixing region[J]. Continental Shelf Research, 2009, 29(1): 175-193. doi: 10.1016/j.csr.2008.01.019
    [2]
    deNijs M A J, Winterwerp J C, Pietrzak J D. The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2010, 40(11): 2357-2380. doi: 10.1175/2010JPO4233.1
    [3]
    Talke S A, de Swart H E, De Jonge V N. An idealized model and systematic process study of oxygen depletion in highly turbid estuaries[J]. Estuaries and Coasts, 2009, 32(4): 602-620. doi: 10.1007/s12237-009-9171-y
    [4]
    Tu J, Fan D. Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore[J]. Journal of Geophysical Research: Oceans, 2017:122:3417-3433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2016JC012120
    [5]
    Uncles R J, Stephens J A, Harris C. Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system: the upper Humber and Ouse Estuary, UK[J]. Marine Geology, 2006, 235(1): 213-228. https://www.sciencedirect.com/science/article/abs/pii/S0025322706002684
    [6]
    Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries and Coasts, 1993, 16(1): 113-125. doi: 10.2307/1352769
    [7]
    Chernetsky A. Trapping of sediment in tidal estuaries[J]. Repository.Tudelf.nl, 2012:17-89.
    [8]
    Fischer H. Mass transport mechanisms in partially stratified estuaries[J]. Journal of fluid mechanics, 1972, 53(04): 671-687. doi: 10.1017/S0022112072000412
    [9]
    Dyer K R. The salt balance in stratified estuaries[J]. Estuarine and coastal marine science, 1974, 2(3): 273-281. doi: 10.1016/0302-3524(74)90017-6
    [10]
    Winterwerp J C. Decomposition of the mass transport in narrow estuaries[J]. Estuarine, Coastal and Shelf Science, 1983, 16(6): 627-638. doi: 10.1016/0272-7714(83)90075-6
    [11]
    Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary[J]. Estuaries and Coasts, 1985, 8(3): 256-269. doi: 10.2307/1351486
    [12]
    deNijs M A J, Winterwerp J C, Pietrzak J D. The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2010, 40(11): 2357-2380. doi: 10.1175/2010JPO4233.1
    [13]
    沈健, 沈焕庭, 潘定安, 等.长江河口最大浑浊带水沙输运机制分析[J].地理学报, 1995, 50(5):411-420. doi: 10.3321/j.issn:0375-5444.1995.05.004

    SHEN Jian, SHEN Huanting, PAN Dingan, et al. Analysis of transport mechanism of water and suspended sediment in the turbidity maximum of the Changjiang Estuary[J]. Acta Geographica Sinica, 1995, 50(5):411-420. doi: 10.3321/j.issn:0375-5444.1995.05.004
    [14]
    Hu G, Wu D, Yan Y. Dynamic Response of the Suspended Sediment Change in the Tidal Channel of Jiangsu Sea Area[C]//Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on. IEEE, 2010: 1-5.
    [15]
    张钊, 李占海, 张国安, 等.长江口南槽中段枯季水沙输运特征研究[J].长江流域资源与环境, 2016, 25(12):1832-1841. doi: 10.11870/cjlyzyyhj201612006

    ZHANG Zhao, LI Zhanhai, ZHANG Guoan, et al. Water and Suspended Sediment transports in the middle reach of the South Passage in the Changjiang Estuary during the dry season[J]. Resources and Environment in the Yangtze Basin, 2016, 25(12):1832-1841. doi: 10.11870/cjlyzyyhj201612006
    [16]
    陈甫源, 胡金春, 白咸勇, 等.江道采砂对椒江河口的影响分析[J].泥沙研究, 2008(3):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj200804009

    CHEN Fuyuan, HU Jinchun, BAI Xianyong, et. Effect of evacuating sand on Jiaojiang River estuary[J]. Journal of Sediment Research, 2008(3):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj200804009
    [17]
    夏威夷, 赵晓冬, 张新周.椒江河口径、潮流变化对含沙量时空分布的影响[J].水利水运工程学报, 2016(3):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsykxyj201603005

    XIA Weiyi, ZHAO Xiaodong, ZHANG Xinzhou. Influences of variation in runoff and tide on spatial and temporal distribution of sediment concentration in Jiaojiang River estuary[J]. Hydro-Science and Engineering, 2016(3):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsykxyj201603005
    [18]
    王高阳.台州湾悬沙运动的二维数学模型[D].浙江大学学位论文, 2007.

    WANG Gaoyang. A 2D Numerical Simulation of Suspended Sediment in the TaizhouBay[D].Zhejiang University, 2007.
    [19]
    Guan W B, Kot S C, Wolanski E. 3-D fluid-mud dynamics in the Jiaojiang Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2005, 65(4): 747-762. doi: 10.1016/j.ecss.2005.05.017
    [20]
    郭聪.椒江河口对围海工程的响应[D].浙江大学学位论文, 2016.

    GUO Cong. Response of Jiaojiang Estuary to Coastal Reclamation[D]. Zhejiang University, 2016.
    [21]
    Li B G, Eisma D, Xie Q C, et al. Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China[J]. Journal of Sea Research, 1999, 42(2): 105-116. doi: 10.1016/S1385-1101(99)00023-4
    [22]
    谢钦春, 李伯根.椒江河口悬沙浓度垂向分布和泥跃层发育[J].海洋学报, 1998, 20(6):58-69. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199806007.htm

    XIE Qinchun, LI Bogen. Vertical distributions of suspended matter and lutoclines in the Jiaojiang Estuary[J]. Acta Oceanologica Sinica, 1998, 20(6):58-69. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199806007.htm
    [23]
    符宁平, 毕敖洪.椒江悬沙运动若干问题的探讨[J].泥沙研究, 1989 (3): 51-57. doi: 10.3321/j.issn:0468-155X.1989.03.002

    FU Ningping, BI Aohong. Research on some problems of suspended sediment transport in the Jiaojiang[J]. Journal of Sediment Research, 1989(3):51-57. doi: 10.3321/j.issn:0468-155X.1989.03.002
    [24]
    Dong L, Wolanski E, Li Y. Field and modeling studies of fine sediment dynamics in the extremely turbid Jiaojiang River estuary, China[J]. Journal of Coastal Research, 1997: 995-1003. https://www.jstor.org/stable/4298710
    [25]
    Guan W B, Wolanski E, Dong L X. Cohesive sediment transport in the Jiaojiang River estuary, China[J]. Estuarine, Coastal and Shelf Science, 1998, 46(6): 861-871. doi: 10.1006/ecss.1998.0336
    [26]
    Dyer K R. Estuaries—A Physical Introduction[M].John Wiley, Chichester, UK, 1997:195.
    [27]
    吴德安.江苏辐射沙洲水道潮流及悬沙动力研究[D].南京师范大学学位论文, 2004.

    WU Dean. Hydrodynamic studies to the tidal current and suspended sediments in the channels of Jiangsu Radial Sand Ridges[D].Nanjing Normal University, 2004.
    [28]
    Yu Q, Wang Y, Gao J, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7705-7724. doi: 10.1002/2014JC010228
    [29]
    Jay D A, Musiak J D. Internal tidal asymmetry in channel flows: Origins and consequences[C]//Mixing in estuaries and coastal seas, Coastal Estuarine Studies, edited by C.Pattiaratchi. 1996: 211-249. https://www.researchgate.net/publication/278640106_Internal_tidal_asymmetry_in_channel_flows_Origins_and_consequences
    [30]
    de Nijs M A J, Pietrzak J D, Winterwerp J C. Advection of the salt wedge and evolution of the internal flow structure in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2011, 41(1): 3-27. doi: 10.1175/2010JPO4228.1
    [31]
    陈景东, 汪亚平, 史本伟, 等.长江口北港口门海域悬沙输运机制分析[J].海洋工程, 2014, 32(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hygc201403007

    CHEN Jingdong, WANG Yaping, SHI Benwei, et al. Mechanisms on the suspended sediment transport in the mouth of North Channel of Yangtze River estuary[J]. The Ocean Engineering, 2014, 32(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hygc201403007
    [32]
    时钟, 陈伟民.长江口北槽最大浑浊带泥沙过程[J].泥沙研究, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005

    SHI Zhong, CHEN Weimin. Fine sediment transport in Turbidity Maximum at the North Passage of the Changjiang Estuary[J]. Journal of Sediment Research, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005
    [33]
    Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries and Coasts, 1993, 16(1): 113-125. doi: 10.2307/1352769
    [34]
    Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360. doi: 10.1016/S0278-4343(02)00010-9
    [35]
    Winterwerp J C. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening[J]. Ocean Dynamics, 2011, 61(2-3): 203-215. doi: 10.1007/s10236-010-0332-0
    [36]
    Becherer J, Flöser G, Umlauf L, et al. Estuarine circulation versus tidal pumping: Sediment transport in a well-mixed tidal inlet[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6251-6270 doi: 10.1002/2016JC011640
    [37]
    Fischer H B, List E J, Koh R C Y, et al. Mixing in inland and coastal waters Academic Press[J]. New York, 1979: 229-242
  • Cited by

    Periodical cited type(5)

    1. ZHANG Xianrong,SUN Zhilei,WANG Libo,ZHANG Xilin,ZHAI Bin,XU Cuiling. Supply of Dissolved Organic Carbon from the Cold Seeps-Hydrothermal System and Its Impact on the Deep-Sea Carbon Cycle: An Overview. Journal of Ocean University of China. 2024(06): 1469-1480 .
    2. 窦衍光,李清,吴永华,赵京涛,孙呈慧,蔡峰,陈晓辉,张勇,范佳慧,石学法. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义. 地学前缘. 2022(04): 84-92 .
    3. 苗晓明,冯秀丽,李景瑞,肖倩文,但孝鹏,尉建功. 南海甲烷渗漏研究进展及其对我国南海科学钻探选址的启示. 地质学报. 2022(08): 2877-2895 .
    4. 程俊,王淑红,黄怡,颜文. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征. 海洋科学. 2019(05): 110-122 .
    5. 张炜,邵明娟,姜重昕,田黔宁. 世界天然气水合物钻探历程与试采进展. 海洋地质与第四纪地质. 2018(05): 1-13 . 本站查看

    Other cited types(2)

Catalog

    Article views (2346) PDF downloads (38) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return