LI Gaocong, GAO Shu, GAO Jianhua. Modeling the growth limit of seven major Holocene river deltas in Asia[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 11-22. DOI: 10.16562/j.cnki.0256-1492.2018.01.002
Citation: LI Gaocong, GAO Shu, GAO Jianhua. Modeling the growth limit of seven major Holocene river deltas in Asia[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 11-22. DOI: 10.16562/j.cnki.0256-1492.2018.01.002

Modeling the growth limit of seven major Holocene river deltas in Asia

More Information
  • Received Date: February 08, 2017
  • Revised Date: June 04, 2017
  • River deltas grow in response to sediment discharge from the land, and there is a limit of growth. A conceptual geometric model is used in this paper, based on the principle of mass conservation, to investigate the impact of the significant decrease in sediment supply to the growth of deltas taking seven large Asian river deltas as examples. Furthermore, the sediment retention index for the Holocene period, the critical river input for maintenance of a delta and the growth limit without human interferences are discussed. Preliminary analyses of these deltas indicate that the area of delta plain is roughly in an order of 103~104km2, and the volumes of 101~103km3, and both are significantly positively correlated with the fluvial flux before the large numbers of dams being constructed. The range of the Holocene retention index varies between 36%~54%, with an average of 45%, indicating that more than half of the sediment escaped offshore and supported the deposition of shelf mud or deep sea fan. For the Yangtze, the Pearl, the Red, the Mekong and the Indus rivers, their sediment discharges are now below the level required to maintain the area of the sub-aerial deltaic plain and the volume of the entire deltaic deposits, except for the Irrawaddy and the Ganges-Brahmaputra rivers, of which the river discharges are higher than the critical level required to maintain their total volumes, but lower than the critical level required to maintain deltaic plain areas. Without coastal protection projects, the area and volume for the former five deltas would drop sharply, but increase for the latter two. The present study has established the interrelationships between the growth magnitude, Holocene sediment retention index, the critical fluvial sediment flux and the growth limit of the seven Asian major river deltas, demonstrating that the method based on the conceptual geometric model has a great potential to predict the long-term evolution of river deltas.
  • [1]
    Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162. http://archives.datapages.com/data/bulletns/1953-56/data/pg/0037/0002/0350/0355.htm?doi=10.1306%2F5CEADC65-16BB-11D7-8645000102C1865D
    [2]
    Wright L D, Coleman J M. River delta morphology: wave climate and the role of the subaqueous profile[J]. Science, 1972, 176(4032): 282-284. doi: 10.1126/science.176.4032.282
    [3]
    Coleman J M. Deltas: processes of deposition and models for exploration[C]//International Human Resources Development Corporation. Englewood Cliffs, NJ: Prentice Hall, 1981: 1-26.
    [4]
    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265(5169): 228-231. doi: 10.1126/science.265.5169.228
    [5]
    Gao S. Modeling the growth limit of the Changjiang Delta[J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021
    [6]
    Korus J T, Fielding C R. Asymmetry in Holocene river deltas: Patterns, controls, and stratigraphic effects[J]. Earth-Science Reviews, 2015, 150: 219-242. doi: 10.1016/j.earscirev.2015.07.013
    [7]
    Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021
    [8]
    Gao S. Catchment-coast interactions in the Asia-pacific region[C]//Harvey N, ed. Global Change and Integrated Coastal Management. Coastal Systems and Continental margins. Netherlands: Springer, 2006: 67-92. doi: 10.1007%2F1-4020-3628-0_4
    [9]
    Woodroffe C D, Nicholls R J, Saito Y, et al. Landscape Variability and the Response of Asian Megadeltas to Environmental Change[C]//Harvey N, ed. Global Change and Integrated Coastal Management. Coastal Systems and Continental Margins. Dordrecht: Springer, 2006, 10: 277-314. doi: 10.1007/1-4020-3628-0_10
    [10]
    Reading H G. Sedimentary Environments: Processes, Facies and Stratigraphy [M]. Oxford: Blackwell, 1996:181-209. doi: 10.1007%2F3-540-31079-7_81
    [11]
    Ericson J P, Võrõsmarty C J, Dingman S L, et al. Effective sea-level rise and deltas: Causes of change and human dimension implications[J]. Global and Planetary Change, 2006, 50(1-2): 63-82. doi: 10.1016/j.gloplacha.2005.07.004
    [12]
    Võrõsmarty C J, Meybeck M, Fekete B, et al. Anthropogenic sediment retention: major global impact from registered river impoundments[J]. Global and Planetary Change, 2003, 39(1-2): 169-190. doi: 10.1016/S0921-8181(03)00023-7
    [13]
    Wiens J, Grenier L, Grossinger R, et al. The delta as changing landscapes[J]. San Francisco Estuary and Watershed Science, 2016, 14(2): 1-19. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3420903
    [14]
    Blum M D, Roberts H H. Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise[J]. Nature Geoscience, 2009, 2(7): 488-491. doi: 10.1038/ngeo553
    [15]
    Giosan L, Syvitski J, Constantinescu S, et al. Climate change: protect the world's deltas[J]. Nature, 2014, 516(7529): 31-33. doi: 10.1038/516031a
    [16]
    Hart G F, Coleman J. The world deltas database framework[M].Baton Rouge:Louisiana State University, 2012:www.geol.lsu.edu/WDD.
    [17]
    Li B H, Li C X, Shen H T. A preliminary study on sediment flux in the Changjiang Delta during the postglacial period[J]. Science in China Series D: Earth Sciences, 2003, 46(7): 743-752. doi: 10.1360/03yd9065
    [18]
    何志刚, 吴超羽, 莫文渊, 等.冰后期珠江三角洲沉积物通量的初步研究[J].海洋学报, 2006, 28(6): 72-77. http://d.old.wanfangdata.com.cn/Periodical/hyxb200606010

    HE Zhigang, WU Chaoyu, MO Wenyuan, et al. A preliminary study on sediment flux in the Zhujiang River Delta during the postglacial period[J]. Acta Oceanologica Sinica, 2006, 28(6): 72-77. http://d.old.wanfangdata.com.cn/Periodical/hyxb200606010
    [19]
    Wells J T, Coleman J M. Deltaic morphology and sedimentology, with special reference to the Indus River delta[R]. Baton Rouge: Louisiana State University, 1985.
    [20]
    Chen X Q. Changjian (Yangtze) River delta, China[J]. Journal of Coastal Research, 1998, 14(3): 838-858. https://www.jstor.org/stable/4298837
    [21]
    Huang G. Holocene record of storms in sediments of the Pearl River Estuary and vicinity[D].The University of Hong Kong, 2000.
    [22]
    Woodroffe C D. Deltaic and estuarine environments and their Late Quaternary dynamics on the Sunda and Sahul shelves[J]. Journal of Asian Earth Sciences, 2000, 18(4): 393-413. doi: 10.1016/S1367-9120(99)00074-7
    [23]
    Ta T K O, Nguyen V L, Tateishi M, et al. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam[J]. Quaternary Science Reviews, 2002, 21(16-17): 1807-1819. doi: 10.1016/S0277-3791(02)00007-0
    [24]
    Tanabe S, Hori K, Saito Y, et al. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes[J]. Quaternary Science Reviews, 2003, 22(21-22): 2345-2361. doi: 10.1016/S0277-3791(03)00138-0
    [25]
    Tanabe S, Saito Y, Sato Y, et al. Stratigraphy and Holocene evolution of the mud-dominated Chao Phraya delta, Thailand[J]. Quaternary Science Reviews, 2003, 22(8-9): 789-807. doi: 10.1016/S0277-3791(02)00242-1
    [26]
    Rogers K G. Spatial and temporal sediment distribution from river mouth to remote depocenters in the Ganges-Brahmaputra delta, Bangladesh[D]. Doctoral Dissertation of Vanderbilt University, 2012.
    [27]
    Amante C, Eakins B W. ETOPO1 arc-minute global relief model: Procedures, data sources and analysis[J]. Psychologist, 2009, 16(3):20-25.
    [28]
    Allison M A. Geologic framework and environmental status of the Ganges-Brahmaputra delta[J]. Journal of Coastal Research, 1998, 14(3): 826-836. https://www.jstor.org/stable/4298836
    [29]
    赵焕庭, 张乔民, 宋朝景, 等.华南海岸和南海诸岛地貌与环境[M].北京:科学出版社, 1999.

    ZHAO Huanting, ZHANG Qiaomin, SONG Chaojing, et al. Geomorphology and environment of the South China coast and the South China Sea islands[M]. Beijing: Science Press, 1999.
    [30]
    Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary[J]. Journal of Sea Research, 1999, 41(1-2): 129-140. doi: 10.1016/S1385-1101(98)00047-1
    [31]
    Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam[J]. Marine Geology, 2010, 269(1-2): 46-60. doi: 10.1016/j.margeo.2009.12.005
    [32]
    Chen Z Y, Stanley D J. Quaternary subsidence and river channel migration in the Yangtze delta plain, eastern China[J]. Journal of Coastal Research, 1995, 11(3): 927-945.
    [33]
    Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans[J]. Global & Planetary Change, 2007, 57(3-4): 261-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c013dfb47141be28fbc494773968efc
    [34]
    Wang H, Wright T J, Yu Y, et al. InSAR reveals coastal subsidence in the Pearl River Delta, China[J]. Geophysical Journal International, 2012, 191(3): 1119-1128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-246X.2012.05687.x
    [35]
    Xia J J, Yan Z W, Zhou W, et al. Projection of the Zhujiang (Pearl) River Delta's potential submerged area due to sea level rise during the 21st century based on CMIP5 simulations[J]. Acta Oceanologica Sinica, 2015, 34(9): 78-84. doi: 10.1007/s13131-015-0700-1
    [36]
    王龙.基于19年卫星测高数据的中国海海平面变化及其影响因素研究[D].中国海洋大学硕士学位论文, 2013.

    WANG Long. On sea level changes and their influencing factors based on 19-years satellite altimetry data[D]. Master thesis, Ocean University of China, 2013.
    [37]
    Erban L E, Gorelick S M, Zebker H A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam[J]. Environmental Research Letters, 2014, 9(8): 084010. doi: 10.1088/1748-9326/9/8/084010
    [38]
    Hedley P J, Bird M I, Robinson R A J. Evolution of the Irrawaddy delta region since 1850[J]. Geographical Journal, 2010, 176(2): 138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1475-4959.2009.00346.x
    [39]
    Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities. Nature Geoscience, 2009, 2(10): 681-686. doi: 10.1038/ngeo629
    [40]
    Higgins S A, Overeem I, Steckler M S, et al. InSAR measurements of compaction and subsidence in the Ganges‐Brahmaputra Delta, Bangladesh[J]. Journal of Geophysical Research Earth Surface, 2014, 119(8): 1768-1781. doi: 10.1002/2014JF003117
    [41]
    Kay S, Caesar J, Wolf J, et al. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change[J]. Environmental Science: Processes & Impacts, 2015, 17(7): 1311-1322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bd413428538edd0cfcbfa7afc15a26b
    [42]
    Khan T M A, Razzaq D A, Chaudhry Q U Z, et al. Sea level variations and geomorphological changes in the coastal belt of Pakistan[J]. Marine Geodesy, 2002, 25(1-2): 159-174. doi: 10.1080/014904102753516804
    [43]
    Karim S, Mortazavi S M. Investigation of the land subsidence and its consequences of large groundwater withdrawal inRafsanjan, Iran[J]. Pakistan Journal of Biological Sciences, 2008, 11(2): 265-269. doi: 10.3923/pjbs.2008.265.269
    [44]
    Hori K, Saito Y. Classification, architecture, and evolution of large-river deltas[M]//Gupta A, ed. Large Rivers: Geomorphology and Management.NewYork:John Wiley & Sons, Ltd, 2008: 75-92.
    [45]
    Perillo G M E, Syvitski J P M. Mechanisms of sediment retention in estuaries[J]. Estuarine Coastal and Shelf Science, 2010, 87(2): 175-176. doi: 10.1016/j.ecss.2009.10.026
    [46]
    高抒.长江三角洲对流域输沙变化的响应:进展与问题[J].地球科学进展, 2010, 3(3): 233-241. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201003001

    GAO Shu. Changjiang delta sedimentation in response to catchment discharge changes: progress and problems[J]. Advance in Earth Sciences, 2010, 3(3): 233-241. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201003001
    [47]
    Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1-2): 37-45. doi: 10.1016/0278-4343(85)90020-2
    [48]
    Zhang S R, Liu X X, Higgitt D L, et al. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China[J]. Global and Planetary Change, 2008, 60(3-4): 365-380. doi: 10.1016/j.gloplacha.2007.04.003
    [49]
    Le T P Q, Garnier J, Gilles B, et al. The changing flow regime and sediment load of the Red River, Vietnam[J]. Journal of Hydrology, 2007, 334(1-2): 199-214. doi: 10.1016/j.jhydrol.2006.10.020
    [50]
    Tamura T, Saito Y, Sieng S, et al. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland[J]. Quaternary Science Reviews, 2009, 28(3-4): 327-344. doi: 10.1016/j.quascirev.2008.10.010
    [51]
    Furuichi T, Win Z, Wasson R J. Discharge and suspended sediment transport in the Ayeyarwady River, Myanmar: centennial and decadal changes[J]. Hydrological Processes, 2009, 23(11): 1631-1641. doi: 10.1002/hyp.7295
    [52]
    InamA, Giosan L, Tabrez A M, et al. The geographic, geological and oceanographic setting of the Indus River[M]//Gupta A, ed. Large rivers: Geomorphology and Management. New York: John Wiley & Sons, Ltd, 2007: 333-345.
    [53]
    Gao S, Liu Y L, Yang Y, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf[J]. Journal of Asian Earth Sciences, 2015, 114: 562-573. doi: 10.1016/j.jseaes.2015.07.024
    [54]
    Hanebuth T J J, Hendrik L, Nizou J. Mud depocenters on continental shelves—appearance, initiation times, and growth dynamics[J]. Geo-Marine Letters, 2015, 35(6): 487-503. doi: 10.1007/s00367-015-0422-6
    [55]
    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes[J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7
    [56]
    Mishra R, Pandey D K, Ramesh P. Active channel systems in the middle indus fan: results from high-resolution bathymetry surveys[J]. Current Science, 2015, 108(3): 409-412.
    [57]
    杨世伦, 朱骏, 赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计[J].海洋学报, 2003, 25(5): 83-91. doi: 10.3321/j.issn:0253-4193.2003.05.010

    YANG Shilun, ZHU Jun, ZHAO Qingying. A preliminary study on the influence of Changjiang River sediment supply on subaqueous delta-Evidences in late 20th century and an expectation for the coming decades[J]. Acta Oceanologica Sinica, 2003, 25(5): 83-91. doi: 10.3321/j.issn:0253-4193.2003.05.010
    [58]
    Zhang W, Wei X Y, Zheng J H, et al. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves[J]. Continental Shelf Research, 2012, 38: 35-46. doi: 10.1016/j.csr.2012.02.017
    [59]
    Lu X X, Kummu M, Oeurng C. Reappraisal of sediment dynamics in the Lower Mekong River, Cambodia[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1855-1865. doi: 10.1002/esp.3573
    [60]
    Robinson R A J, Bird M I, Oo N W, et al. The Irrawaddy river sediment flux to the Indian Ocean: the original nineteenth-century data revisited[J]. The Journal of Geology, 2007, 115(6): 629-640. doi: 10.1086/521607
    [61]
    Darby S E, Dunn F E, Nicholls R J, et al. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta[J]. Environmental Science: Processes & Impacts, 2015, 17(9): 1587-1600. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18f8f58d946a55992e2198f0027d0618
    [62]
    高抒.废黄河口海岸侵蚀与对策[J].海岸工程, 1989, 8(1): 37-42. doi: 10.1007-s00264-009-0856-4/

    GAO Shu. Erosion of Old Yellow River delta in northern Jiangsu and coast protection[J]. Coastal Engineering, 1989, 8(1): 37-42. doi: 10.1007-s00264-009-0856-4/
    [63]
    虞志英, 樊社军, 金缪.江苏北部废黄河口水下三角洲稳定性和深水港建设[J].地理学报, 1998, 65(S1): 158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb1998z1020

    YU Zhiying, FAN Shejun, JIN Miao. The Old Yellow River underwater delta in the north Jiangsu and the Seaport Building[J]. Acta Geographica Sinica, 1998, 65(S1): 158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb1998z1020
    [64]
    张忍顺, 陆丽云, 王艳红.江苏海岸侵蚀过程及其趋势[J].地理研究, 2002, 21(4): 469-478. doi: 10.3321/j.issn:1000-0585.2002.04.009

    ZHANG Renshun, LU Liyun, WANG Yanhong. The mechanism and trend of coastal erosion of Jiangsu Province in China[J]. Geographical Research, 2002, 21(4): 469-478. doi: 10.3321/j.issn:1000-0585.2002.04.009
  • Related Articles

    [1]ZHAN Shuie, WU Jinglu, WANG Jingzhong, XIA Ruyang, GE Zhennan. Characteristics of grain size and chemical elements in the Aral Sea sediments and its environmental significance in the arid zone of Central Asia[J]. Marine Geology & Quaternary Geology. DOI: 10.16562/j.cnki.0256-1492.2024110701
    [2]HU Jianxiong, HUANG Enqing, TIAN Jun. Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 16-31. DOI: 10.16562/j.cnki.0256-1492.2024062802
    [3]WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. DOI: 10.16562/j.cnki.0256-1492.2019110701
    [4]PAN Dadong, WANG Zhanghua. A comparative study on the Late Quaternary stratigraphic architecture and formation of megadeltas in East and South Asia[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 12-21. DOI: 10.16562/j.cnki.0256-1492.2019012901
    [5]RAN Weimin, LUAN Xiwu, SHAO Zhufu, LIU Hong, LI Deyong, ZHAO Yang, WANG Huidong, YAN Zhonghui. Research on characteristics of growth faults in the southern East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 100-112. DOI: 10.16562/j.cnki.0256-1492.2017052501
    [6]SUN Wenjun, LI Sanzhong, WANG Pengcheng, LI Xiyao, LIU Xiaoguang, ZHANG Jian, LAN Haoyuan, LI Shaojun. MESOZOIC DOME-BASIN STRUCTURES IN WESTERN SHANDONG PROVINCE AND ITS BEARING ON TRANSITION OF TECTONIC REGIMES IN EAST ASIA[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 110-125. DOI: 10.16562/j.cnki.0256-1492.2017.04.007
    [7]Dmitrienko Liudmila Valer′evna, WANG Pengcheng, LI Sanzhong, CAO Xianzhi, ZHOU Zaizheng, HU Mengying, SUO Yanhui, GUO Lingli, WANG Yongming, LI Xiyao, LIU Xin, YU Shengyao. Meso-Cenozoic Evolution of Earth Surface System Under the East Asian Tectonic Superconvergence[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 33-64. DOI: 10.16562/j.cnki.0256-1492.2017.04.003
    [8]WANG Xin, SUN Donghuai, WANG Fei, LI Baofeng, WU Sheng. THE ULTRAFINE COMPONENT RECORD FROM THE LATE CENOZOIC SEQUENCE IN THE CENTRAL TARIM BASIN AND ITS PALAEOCLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2012, 32(2): 143-151. DOI: 10.3724/SP.J.1140.2012.02143
    [9]DONG Jinguo, ZHANG Fu. THE MID-HOLOCENE CLIMATE VARIATION INFERRED FROM A DATED STALAGMITE RECORD FROM WANGJIAWEI CAVE, NORTHEAST CHINA[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 119-125. DOI: 10.3724/SP.J.1140.2012.01119
    [10]CAI Qiufang. RESPONSE OF PINUS TABULAEFORMIS TREE-RING GROWTH TO THREE MOISTURE INDICES AND JANUARY TO JULY WALTER INDEX RECONSTRUCTION IN HELAN MOUNTAI[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 131-136. DOI: 10.3724/SP.J.1140.2009.06131
  • Cited by

    Periodical cited type(11)

    1. 石林,杨青,刘连文,张晋,郑妍,张俞,杨万书,邹梓宁,郑洪波. 滇西南沧源岩溶洞穴硝洞堆积物来源分析. 海洋地质与第四纪地质. 2024(02): 81-96 . 本站查看
    2. 段昊一,毛居东,程鹏,任啸霖,范德江. 长江口和东海内陆架黏土矿物与黏土粒级碎屑矿物构成及物源指示意义. 海洋地质与第四纪地质. 2024(05): 119-128 . 本站查看
    3. 蒋英,李波,王洪岭,李美荣,吴迪,张莉莉. 河南某矽卡岩型高泥质难选钨钼矿工艺矿物学. 矿产综合利用. 2023(03): 192-198 .
    4. 李秋玲,乔淑卿,方习生,石学法. 预处理过程中酸对黏土矿物的影响——基于标准矿物的XRD分析. 海洋科学进展. 2023(04): 610-621 .
    5. 肖春晖,王永红,林间. 近1 Ma以来帕里西维拉海盆沉积物物源和古气候:粒度和黏土矿物特征的指示. 沉积学报. 2022(02): 508-524 .
    6. 罗瑞华,付威,樊军,刘萌,牛小桃,牛育华. 添加外源有机物和黏粒材料对沙黄土有机碳和菠菜生长的影响. 土壤. 2022(03): 464-472 .
    7. 王琦,马龙,黄康俊,雷志远,谢淑云. 蒙脱石、高岭石和伊利石X射线衍射定量分析. 贵州地质. 2021(01): 71-78 .
    8. 舒雨婷,刘志杰,余佳,孔敏,田先德,刘升发. 海洋沉积物黏土矿物相对含量不同计算方法对比研究. 海洋通报. 2019(05): 585-590 .
    9. 王颖,乔淑卿,葛晨东,石学法,方习生,董智. 预处理对海洋黏土矿物XRD测试结果的影响. 海洋科学进展. 2018(02): 242-252 .
    10. 徐龙凤,魏群山,吕强,唐立朋,刘亚男,柳建设. 水体模拟颗粒物对四环素的吸附特性及基本规律. 环境科学. 2018(04): 1668-1676 .
    11. 卢磊,张鸿君,杨子群. 利用黏土矿物指示古气候的方法. 内蒙古煤炭经济. 2016(12): 18+86 .

    Other cited types(10)

Catalog

    Article views (3270) PDF downloads (74) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return