HUANG Guoheng, SU Zheng, XIA Meisheng, WU Daidai. STUDY ON SAND PRODUCTION IN A NATURAL GAS HYDRATE PRODUCTION WELL[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 174-183. DOI: 10.16562/j.cnki.0256-1492.2017.05.018
Citation: HUANG Guoheng, SU Zheng, XIA Meisheng, WU Daidai. STUDY ON SAND PRODUCTION IN A NATURAL GAS HYDRATE PRODUCTION WELL[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 174-183. DOI: 10.16562/j.cnki.0256-1492.2017.05.018

STUDY ON SAND PRODUCTION IN A NATURAL GAS HYDRATE PRODUCTION WELL

More Information
  • Received Date: August 12, 2017
  • Revised Date: September 02, 2017
  • Natural gas hydrate has been proved significant as a kind of unconventional energy source. However, the sand production from gas hydrate-bearing deposits has remained a nightmare to the commercial development of the resource. The northern slope of the South China Sea is an important natural gas hydrate area in China. The natural gas hydrate there is distributed mainly in a scattered pattern by weakly cemented deposits and it really is urgent to study the mechanism of sand production for sustainable development of the resource. The fundamental reason of sand production is the decrease in the strength of reservoir medium, which is cemented by hydrate, and effected by the factors of hydrate saturation, pore fluid pressure, flow rate, production pressure and so on. Based on the comparison of sand production from the natural gas hydrate reservoir to the conventional oil and gas reservoir, this paper summarizes the up-to-date research results of sand production in weakly cemented sandstone reservoirs, and taking it as a reference we studied the sand production in natural gas hydrate reservoirs.
  • [1]
    Kvenvolden K A. A primer on the geological occurrence of gas hydrate[J]. Geological Society, London, Special Publications, 1998, 137(1): 9-30. doi: 10.1144/GSL.SP.1998.137.01.02
    [2]
    Liu Y, Gamwo I K. Comparison between equilibrium and kinetic models for methane hydrate dissociation[J]. Chemical Engineering Science, 2012, 69(1): 193-200. doi: 10.1016/j.ces.2011.10.020
    [3]
    Sum A K, Koh C A, Sloan E D. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial and Engineering Chemistry Research, 2009, 48(16): 7457-7465. doi: 10.1021/ie900679m
    [4]
    Kurihara M, Sato A, Funatsu K, et al. Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada[C]//International Oil and Gas Conference and Exhibition in China. Beijing, China: Society of Petroleum Engineers, 2010.
    [5]
    Hunter R B, Collett T S, Boswell R, et al. Mount elbert gas hydrate stratigraphic test well, Alaska north slope: overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015
    [6]
    Kvamme B. Feasibility of simultaneous CO2 storage and CH4 production from natural gas hydrate using mixtures of CO2 and N2[J]. Canadian Journal of Chemistry, 2015, 93(8): 897-905. doi: 10.1139/cjc-2014-0501
    [7]
    Terao Y, Duncan M, Hay B, et al. Deepwater methane hydrate gravel packing completion results and challenges[C]//Offshore Technology Conference 2014. Houston, Texas, USA: Offshore Technology Conference, 2014.
    [8]
    Yoshihiro T, Duncan M W, Hay W J, et al. Deepwater methane hydrate gravel packing completion results and challenges[C]//Offshore Technology Conference 2014. Houston, Texas: Offshore Technology Conference, 2014.
    [9]
    Kurihara M, Sato A, Funatsu K, et al. Analysis of 2007 and 2008 Gas Hydrate Production Tests on the Aurora/JOGMEC/NRCan Mallik 2L-38 Well Through Numerical Simulation[M]//Dallimore S R, Yamamoto K, Wright J F, et al. Scientific Results from the JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Mackenzie Delta: Natural Resources Canada, 2012.
    [10]
    Hancock S H, Collett T S, Dallimore S R, et al. Overview of Thermal-Stimulation Production-Test Results for the JAPE X/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well[M]//Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Ottawa: Geological Survey of Canada, 2005.
    [11]
    李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201607005

    LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201607005
    [12]
    Rahmati H, Jafarpour M, Azadbakht S, et al. Review of sand production prediction models[J]. Journal of Petroleum Engineering, 2013, 2013: 864981.
    [13]
    宁伏龙, 蒋国盛, 张凌, 等.影响含天然气水合物地层井壁稳定的关键因素分析[J].石油钻探技术, 2008, 36(3): 59-61. doi: 10.3969/j.issn.1001-0890.2008.03.014

    NING Fulong, JIANG Guosheng, ZHANG Ling, et al. Analysis of key factors affecting wellbore stability in gas hydrate formations[J]. Petroleum Drilling Techniques, 2008, 36(3): 59-61. doi: 10.3969/j.issn.1001-0890.2008.03.014
    [14]
    Rutqvist J, Moridis G J, Grover T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production[J]. Journal of Petroleum Science and Engineering, 2009, 67(1-2): 1-12. doi: 10.1016/j.petrol.2009.02.013
    [15]
    吴时国, 陈珊珊, 王志君, 等.大陆边缘深水区海底滑坡及其不稳定性风险评估[J].现代地质, 2008, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013

    WU Shiguo, CHEN Shanshan, WANG Zhijun, et al. Submarine landslide and risk evaluation on Its instability in the deepwater continental margin[J]. Geoscience, 2008, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013
    [16]
    Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213(1-4): 379-401. doi: 10.1016/j.margeo.2004.10.015
    [17]
    Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. Florida: CRC Press, 2007.
    [18]
    曹宇春.考虑骨架压缩效应的饱和土有效应力原理[J].施工技术, 2013, 42(S1): 7-11. http://www.cqvip.com/QK/90566A/2013S1/1005610185.html

    CAO Yuchun. Effective stress principle of saturated soils in terms of skeleton compressibility[J]. Construction Technology, 2013, 42(S1): 7-11. http://www.cqvip.com/QK/90566A/2013S1/1005610185.html
    [19]
    Kennett J, Cannariato K, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
    [20]
    邵明娟, 张炜.海洋地质信息(天然气水合物勘查与试采专刊)[R].北京: 中国地质图书馆, 2017.

    SHAO Mingjuan, ZHANG Wei. Marine Geology Information (Natural gas hydrate exploration and test)[R]. Beijing: China Geological Library, 2017.]
    [21]
    Ecker C, Dvorkin J, Nur A M. Estimating the amount of gas hydrate and free gas from marine seismic data[J]. Geophysics, 2000, 65(2): 565-573. doi: 10.1190/1.1444752
    [22]
    宁伏龙.天然气水合物地层井壁稳定性研究[D].北京: 中国地质大学博士学位论文, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10491-2006053409.htm

    NING Fulong. Research on wellbore stability in gas hydrate formation[D]. Beijing: Doctoral Dissertation of China University of Geosciences, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10491-2006053409.htm
    [23]
    Kingston E, Clayton C, Priest J. Emily Kingston, Chris Clayton and Jeff Priest School of Civil Engineering and the Environment University of Southampton Highfield, Southampton, SO17 1BJ UNITED KINGDOM[J]. Hydrate Morphology, 2008.
    [24]
    Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate‐bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5762815b05ef1bf0ed9be6fc1d599e2c
    [25]
    Yan R T, Wei C F. Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits[J]. International Journal of Geomechanics, 2017, 17(8): 04017032. doi: 10.1061/(ASCE)GM.1943-5622.0000914
    [26]
    Hyodo M, Nakata Y, Yoshimoto N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Journal of the Japanese Geotechnical Society, 2005, 45(1): 75-85.
    [27]
    魏厚振, 颜荣涛, 陈盼, 等.不同水合物含量含二氧化碳水合物砂三轴试验研究[J].岩土力学, 2011, 32(S2): 198-203. http://d.old.wanfangdata.com.cn/Conference/7528604

    WEI Houzhen, YAN Rongtao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. http://d.old.wanfangdata.com.cn/Conference/7528604
    [28]
    Grozic J, Ghiassian H. Undrained shear strength of methane hydrate-bearing sand; preliminary laboratory results[C]//Proceeding of 6th Canadian Permafrost Conference and 63rd Canadian Geotechnical Conference. Calgary, 2010.
    [29]
    Masui A, Haneda H, Ogata Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers, 2005.
    [30]
    印兴耀, 刘欣欣, 曹丹平.基于Biot相洽理论的致密砂岩弹性参数计算方法[J].石油物探, 2013, 52(5): 445-451. doi: 10.3969/j.issn.1000-1441.2013.05.001

    YIN Xingyao, LIU Xinxin, CAO Danping. Elastic parameters calculation for tight sand reservoir based on Biot-consistent theory[J]. Geophysical Prospecting for Petroleum, 2013, 52(5): 445-451. doi: 10.3969/j.issn.1000-1441.2013.05.001
    [31]
    Vaziri H H, Nouri A, Hovem K A, et al. Computation of sand production in water injectors[J]. SPE Production and Operations, 2008, 23(4): 518-524. doi: 10.2118/107695-PA
    [32]
    徐守余, 王宁.油层出砂机理研究综述[J].新疆地质, 2007(3): 283-286. doi: 10.3969/j.issn.1000-8845.2007.03.011

    XU Shouyu, WANG Ning. Research on reservoir sand production mechanism[J]. Xinjiang Geology, 2007(3): 283-286. doi: 10.3969/j.issn.1000-8845.2007.03.011
    [33]
    Wu B L, Tan C P, Lu N. Effect of water-cut on sand production-an experimental study[J]. SPE Production and Operations, 2006, 21(3): 349-356. doi: 10.2118/92715-PA
    [34]
    Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. doi: 10.1016/j.energy.2015.08.092
    [35]
    Konno Y, Masuda Y, Akamine K, et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion and Management, 2016, 108: 439-445. doi: 10.1016/j.enconman.2015.11.030
    [36]
    Jin G R, Xu T F, Xin X, et al. Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 497-508. doi: 10.1016/j.jngse.2016.05.047
    [37]
    沈海超, 程远方, 胡晓庆.天然气水合物藏降压开采近井储层稳定性数值模拟[J].石油钻探技术, 2012, 40(2): 76-81. doi: 10.3969/j.issn.1001-0890.2012.02.015

    SHEN Haichao, CHENG Yuanfang, HU Xiaoqing. Numerical Simulation of near wellbore reservoir stability during gas hydrate production by depressurization[J]. Petroleum Drilling Techniques, 2012, 40(2): 76-81. doi: 10.3969/j.issn.1001-0890.2012.02.015
    [38]
    肖钢, 白玉湖, 董锦.天然气水合物综论[M].北京:高等教育出版社, 2012: 156.

    XIAO Gang, BAI Yuhu, DONG Jin. A Comprehensive Review of Natural Gas Hydrates[M]. Beijing: Higher Education Press, 2012.
    [39]
    何湘清.弱胶结砂岩油藏出砂机理研究[D].成都: 西南石油学院博士学位论文, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10615-2003051292.htm

    HE Xiangqing. Study on the mechanism of sand production for weakly consolidated sand formation[D]. Chengdu: Doctoral Dissertation of Southwest Petroleum University, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10615-2003051292.htm
    [40]
    Coates G R, Denoo S. Mechanical properties program using borehole analysis and Mohr's circle[C]//SPWLA 22nd Annual Logging Symposium. Mexico: Society of Petrophysicists and Well-Log Analysts, 1981.
    [41]
    Nordgren R P. Strength of well completions[C]//The 18th U.S. Symposium on Rock Mechanics (USRMS). Golden, Colorado: American Rock Mechanics Association, 1977.
    [42]
    Morita N, Whitfill D L, Massie I, et al. Realistic sand-production prediction: Numerical Approach[J]. SPE Production Engineering, 1989, 4(1): 15-24. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC025654707/
    [43]
    Rahmati H, Nouri A, Vaziri H, et al. Validation of predicted cumulative sand and sand rate against physical-model test[J]. Journal of Canadian Petroleum Technology, 2012, 51(5): 403-410. doi: 10.2118/157950-PA
    [44]
    Morita N, Whitfill D L, Fedde O P, et al. Parametric study of sand-production prediction: analytical approach[J]. SPE Production Engineering, 1989, 4(1): 25-33.
    [45]
    Nouri A, Kuru E, Vaziri H. Elastoplastic modelling of sand production using fracture energy regularization method[J]. Journal of Canadian Petroleum Technology, 2009, 48(4): 64-71. doi: 10.2118/09-04-64
    [46]
    Jafarpour M, Rahmati H, Azadbakht S, et al. Determination of mobilized strength properties of degrading sandstone[J]. Soils and Foundations, 2012, 52(4): 658-667. doi: 10.1016/j.sandf.2012.07.007
    [47]
    张旭辉, 王淑云, 李清平, 等.天然气水合物沉积物力学性质的试验研究[J].岩土力学, 2010, 31(10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007

    ZHANG Xuhui, WANG Shuyun, LI Qingping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007
    [48]
    Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American Mineralogist, 2015, 89(8): 1221-1227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2138/am-2004-8-909
    [49]
    Willson S M, Moschovidis Z A, Cameron J R, et al. New model for predicting the rate of sand production[C]//SPE/ISRM Rock Mechanics Conference. Irving, Texas: Society of Petroleum Engineers, 2002.
    [50]
    Detournay C. Numerical modeling of the slit mode of cavity evolution associated with sand production[J]. SPE Journal, 2009, 14(4): 797-804. doi: 10.2118/116168-PA
    [51]
    蒋官澄, 毕彩丰, 史源清.疏松砂岩油藏出砂状况模拟技术研究[J].中国石油大学学报:自然科学版, 2005, 29(4): 64-67. http://d.old.wanfangdata.com.cn/Periodical/sydxxb200504015

    JIANG Guancheng, BI Caifeng, SHI Yuanqing. Study on simulating sand production in unconsolidated sandstone reservoir[J]. Journal of China University of Petroleum: Edition of Natural science, 2005, 29(4): 64-67. http://d.old.wanfangdata.com.cn/Periodical/sydxxb200504015
    [52]
    吴建平, 孙辉, 高斌, 等.低渗透油藏出砂机理研究——以雁木西油田为例[J].油气地质与采收率, 2003, 10(6): 70-71. doi: 10.3969/j.issn.1009-9603.2003.06.025

    WU Jianping, SUN Hui, GAO Bin, et al. Study on sanding mechanism in low permeability oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(6): 70-71. doi: 10.3969/j.issn.1009-9603.2003.06.025
    [53]
    Hall C D Jr, Harrisberger W H. Stability of sand arches: a key to sand control[J]. Journal of Petroleum Technology, 1970, 22(7): 820-829.
    [54]
    张建国, 程远方.砂拱及其稳定模型的推导及验证[J].石油钻探技术, 1999, 27(1): 40-42. doi: 10.3969/j.issn.1001-0890.1999.01.017

    ZHANG Jianguo, CHENG Yuanfang. Sand arch stability model and its verification[J]. Petroleum Drilling Techniques, 1999, 27(1): 40-42. doi: 10.3969/j.issn.1001-0890.1999.01.017
    [55]
    Bratli R K, Risnes R. Stability and failure of sand arches[J]. Society of Petroleum Engineers Journal, 1981, 21(2): 236-248. doi: 10.2118/8427-PA
    [56]
    Risnes R, Bratli R K, Horsrud P. Sand stresses around a wellbore[J]. Society of Petroleum Engineers Journal, 1982, 22(6): 883-898. doi: 10.2118/9650-PA
    [57]
    Jing LR, Stephansson O. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications[M]. Rotterdam: Elsevier, 2007.
    [58]
    Li L, Papamichos E, Cerasi P. Investigation of Sand Production Mechanisms Using DEM with Fluid Flow[M]//Van Cotthem A, Charlier R, Thimus J F, et al. Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics. Liège, Belgium: Taylor and Francis, 2006: 67-69.
    [59]
    Preece D S, Jensen R P, Perkins E D, et al. Sand production modeling using superquadric discrete elements and coupling of fluid flow and particle motion[C]//Vail Rocks 1999, The 37th U.S. Symposium on Rock Mechanics (USRMS). Vail, Colorado: American Rock Mechanics Association, 1999.
    [60]
    Li L, Holt R M. Particle Scale Reservoir Mechanics[J]. Oil and Gas Science and Technology, 2002, 57(5): 525-538. doi: 10.2516/ogst:2002035
    [61]
    刘先珊, 许明.基于柱坐标系的油井出砂三维数值模型设计与研究[J].岩土工程学报, 2013, 35(5): 871-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201305010

    LIU Xianshan, XU Ming. 3-Dimensional numerical model for sand production in oil wellbore based on cylindrical coordinate system[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 871-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201305010
    [62]
    蒋明镜, 彭镝, 申志福, 等.深海能源土剪切带形成机理离散元分析[J].岩土工程学报, 2014, 36(9): 1624-1630. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201409010

    JIANG Mingjing, PENG Di, SHEN Zhifu, et al. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201409010
    [63]
    Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009
    [64]
    程远方, 沈海超, 李令东, 等.天然气水合物藏物性参数综合动态模型的建立及应用[J].石油学报, 2011, 32(2): 320-323. http://d.old.wanfangdata.com.cn/Periodical/syxb201102021

    CHENG Yuanfang, SHEN Haichao, LI Lingdong, et al. Comprehensive and dynamical modeling for physical parameters of natural gas hydrate reservoirs and its application[J]. Acta Petrolei Sinica, 2011, 32(2): 320-323. http://d.old.wanfangdata.com.cn/Periodical/syxb201102021

Catalog

    Article views (2777) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return