ZHAO Song, CHANG Fengming, LI Tiegang, XU Ye. THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 187-196. DOI: 10.16562/j.cnki.0256-1492.2017.03.019
Citation: ZHAO Song, CHANG Fengming, LI Tiegang, XU Ye. THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 187-196. DOI: 10.16562/j.cnki.0256-1492.2017.03.019

THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA

More Information
  • Received Date: October 13, 2016
  • Revised Date: January 05, 2017
  • In order to assess the difference and applicability of different end-member algorithms in paleoenvironmental reconstruction for the inner shelf of the East China Sea (ECS), six common methods, including nonnegative matrix factorization, eigenvector rotation, hierarchical Bayesian algorithm, grain-size class vs. standard deviation, fitting with theoretical function, and factor analysis, are used to extract the grain-size end members of sediments in core DC1 from the ECS inner shelf. Based on comparison and evaluation of different end members extracted from the above six approaches, their deviations and availabilities are discussed. Two sedimentologically meaningful end members (coarse-grained and fine-grained end members) are deduced by all the six methods. Particle size of mode for the end members from five of the six modeling, except that from factor analysis, are consistent with each other, and the content variations of those end members exhibit fairly uniform downcore pattern along the core DC1. The coarse-grained end members for the five modeling represent transgressive sand deposit, and the fine-grained end members represent fluvial fine-silty deposit. However, the coarse-grained end member from factor analysis indicates storm deposits, and the fine one indicates re-suspended deposits induced by current-wave. Although there are some differences in the particle size distribution and content variation in different end members, the six grain-size end-member approaches have good availabilities for the past environment reconstruction on the ECS inner shelf. The variations in end members are effective to indicate the phase change in hydrodynamic environment caused by the sea-level fluctuation since the last glacial maximum.
  • [1]
    Folk R L, Ward W C. Brazos river bar [Texas]; a study in the significance of grain size parameter[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
    [2]
    Mason C C, Folk R L. Differentiation of beach, dune, and Aeolian flat environments by size analysis, Mustang Island, Texas[J]. Journal of Sedimentary Research, 1958, 28(2): 211-226. http://cn.bing.com/academic/profile?id=6ac0e673f449f72470caa559923a107a&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Friedman G M. Distinction between dune, beach, and river sands from their textural characteristics[J]. Journal of Sedimentary Research, 1961, 31(4): 514-529. http://cn.bing.com/academic/profile?id=dd91d6b267adbaec40f3aa2dc3aae0d4&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Friedman G M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands[J]. Journal of Sedimentary Research, 1967, 37(2): 327-354. doi: 10.1306/74D716CC-2B21-11D7-8648000102C1865D
    [5]
    Visher G S. Fluvial processes as interpreted from ancient and recent fluvial deposits[C]//Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, USA: SEPM, 1965: 116-132.
    [6]
    Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106. http://cn.bing.com/academic/profile?id=1e120e29729084319e3ec98bdaa2f676&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Passega R. Texture as characteristic of clastic deposition[J]. AAPG Bulletin, 1957, 41(9): 1952-1984. http://cn.bing.com/academic/profile?id=548da65c8633bd39ebec32127d3b44d6&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Passega R. Grain size representation by CM patterns as a geologic tool[J]. Journal of Sedimentary Research, 1964, 34(4): 830-847. doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D
    [9]
    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506, doi: 10.1002/2015GC006070.
    [10]
    Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085
    [11]
    Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180. doi: 10.1016/j.sedgeo.2011.09.014
    [12]
    Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741. doi: 10.1007/s11004-015-9611-0
    [13]
    Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3-4): 263-277. doi: 10.1016/S0037-0738(02)00082-9
    [14]
    Boulay S, Colin C, Trentesaux A, et al. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODP Site 1144)[C]//Prell W L, Wang P, Blum P, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 2003.
    [15]
    Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603
    [16]
    Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003
    [17]
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
    [18]
    Hartmann K, Wünnemann B. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses[J]. Quaternary International, 2009, 194(1-2): 28-44. doi: 10.1016/j.quaint.2007.06.037
    [19]
    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904
    [20]
    Reimer P J, Bard E, Bayliss A, et al. Intcal13 and marine13 radiocarbon age calibration curves 0-50, 000 YEARS CAL BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
    [21]
    Qin J G, Wu G X, Zheng H B, et al. The palynology of the First Hard Clay Layer (late Pleistocene) from the Yangtze delta, China[J]. Review of Palaeobotany and Palynology, 2008, 149(1-2): 63-72. doi: 10.1016/j.revpalbo.2007.10.003
    [22]
    胡刚, 刘健, 时连强. 2008年洪水期长江口滨外区悬浮泥沙特征[J].海洋地质前沿, 2011, 27(9): 6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201109002

    HU Gang, LIU Jian, SHI Lianqiang. The characteristics of suspended deposits in the offshore area of the Changjiang estuary during flood season[J]. Marine Geology Frontiers, 2011, 27(9): 6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201109002
    [23]
    李军, 高抒, 曾志刚, 等.长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼, 2003, 34(5): 499-510. doi: 10.3321/j.issn:0029-814X.2003.05.005

    LI Jun, GAO Shu, ZENG Zhigang, et al. Particle-size characteristics and seasonal variability of suspended particulate matters in the Changjiang river estuary[J]. Oceanologia et Limnologia Sinica, 2003, 34(5): 499-510. doi: 10.3321/j.issn:0029-814X.2003.05.005
    [24]
    李军, 高抒, 贾建军, 等. 1998年11月长江河口悬浮体粒度特征的空间分布[J].海洋通报, 2003, 22(6): 21-29. doi: 10.3969/j.issn.1001-6392.2003.06.004

    LI Jun, GAO Shu, JIA Jianjun, et al. Spatial variation of the suspended particulate matter grain-size in the Yangtze Estuary[J]. Marine Science Bulletin, 2003, 22(6): 21-29. doi: 10.3969/j.issn.1001-6392.2003.06.004
    [25]
    肖尚斌, 李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016

    XIAO Shangbin, LI Anchun. A study on environmentally sensitive grain-size population in inner shelf of the East China Sea[J]. Acta Sedimentologica Sinica, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016
    [26]
    王可, 郑洪波, Prins M, 等.东海内陆架泥质沉积反映的古环境演化[J].海洋地质与第四纪地质, 2008, 28(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200804001

    WANG Ke, ZHENG Hongbo, Prins M, et al. High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf[J]. Marine Geology and Quaternary Geology, 2008, 28(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200804001
    [27]
    胡日军, 吴建政, 朱龙海, 等.东海舟山群岛海域表层沉积物运移特性[J].中国海洋大学学报, 2009, 39(3): 495-500, 442. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200903027

    HU Rijun, WU Jianzheng, ZHU Longhai, et al. Characteristic of surface sediment transport in Zhoushan Archipelago sea area, East China Sea[J]. Periodical of Ocean University of China, 2009, 39(3): 495-500, 442. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200903027
    [28]
    Bian C W, Jiang W S, Greatbatch R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5908-5923. doi: 10.1002/2013JC009116
    [29]
    Bian C W, Jiang W S, Greatbatch R J, et al. The Suspended Sediment Concentration Distribution in the Bohai Sea, Yellow Sea and East China Sea[J]. Journal of Ocean University of China, 2013, 12(3): 345-354. doi: 10.1007/s11802-013-1916-3
    [30]
    Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2003, 50(2): 443-455. doi: 10.1016/S0967-0645(02)00462-9
  • Cited by

    Periodical cited type(11)

    1. 李明宸,闫粟,公力维,王雪晨,耿润玉,徐润喆,周亮,汪亚平,沈治雄. 2020年特大洪水期间长江水下三角洲沉积物沉积特征. 海洋地质与第四纪地质. 2025(02): 31-42 . 本站查看
    2. 胡梦珺,许澳康,白清竹. 中晚全新世共和盆地粒度端元指示的物源特征及环境意义. 干旱区资源与环境. 2024(02): 123-131 .
    3. 王伟斌 ,姚弘毅 ,吴昊 ,蔚广鑫 . 厦门五缘湾及同安湾口表层沉积物粒度端元解析. 渔业研究. 2023(01): 54-63 .
    4. 卞红炜,刘建宗,李璇. 粒度端元分析在环境演变中的应用——以克里雅河尾闾KYN22剖面为例. 中南农业科技. 2023(11): 132-136 .
    5. 侯晨阳,靳建辉,邱俊杰,卫俊杰,许岱玉. 末次冰消期以来福建福宁湾钻孔的粒度特征及其环境指示意义. 山地学报. 2023(05): 621-633 .
    6. 刘胜璟,高建华,徐笑梅,石勇,舒卓,吴昊,元冰瑜,贾建军. 浙闽沿岸泥质区沉积物粒度组分对长江入海输沙量减少的响应. 海洋学报. 2021(03): 105-115 .
    7. 刘蓉,岳大鹏,赵景波,苏志珠,石浩,王晓宁. 陕西横山L_2以来风沙/黄土沉积序列的粒度端元特征及其环境意义. 干旱区地理. 2021(05): 1328-1338 .
    8. 郑树森,李永化,魏东岚. 大连贺家圈黄土粒度所指示的物源特征. 云南地理环境研究. 2020(01): 41-47 .
    9. 杨卓,臧淑英,曲鸽,孙丽. 博斯腾湖和查干湖沉积物粒度特征对比及环境意义. 环境科学与技术. 2020(09): 198-208 .
    10. 白敏,鲁瑞洁,丁之勇,王琳栋. 青海湖湖东沙地粒度端元分析及其指示意义. 第四纪研究. 2020(05): 1203-1215 .
    11. 黎武标,李志文,王志刚,马泽源,王珍珍,梁丽婵. 粒度端元揭示的芝罘剖面末次间冰期——末次冰期气候环境变化特征. 海洋地质与第四纪地质. 2019(02): 177-187 . 本站查看

    Other cited types(5)

Catalog

    Article views (2292) PDF downloads (41) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return